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Abstract. We present in detail a dispersion relation formalism for virtual Compton scattering (VCS) off
the proton from threshold into the A(1232)-resonance region. Such a formalism can be used as a tool to
extract the generalized polarizabilities of the proton from both unpolarized and polarized VCS observables
over a larger energy range. We present calculations for existing and forthcoming VCS experiments and
demonstrate that the VCS observables in the energy region between pion production threshold and the
A(1232)-resonance show an enhanced sensitivity to the generalized polarizabilities.

PACS. 11.55.Fv Dispersion relations — 13.40.-f Electromagnetic processes and properties — 13.60.Fz Elastic
and Compton scattering — 14.20.Dh Protons and neutrons

1 Introduction

The field of virtual Compton scattering (VCS) has been
opened up experimentally in recent years by the new high-
precision electron accelerator facilities. On the theoretical
side, an important activity has emerged over the last years
around the VCS process in different kinematical regimes
(see, e.g., [1,2] for reviews).

In VCS off a nucleon target, a virtual photon interacts
with the nucleon and a real photon is emitted in the pro-
cess. At low energy of the outgoing real photon, the VCS
reaction amounts to a generalization of real Compton scat-
tering (RCS) in which both energy and momentum of the
virtual photon can be varied independently, which allows
us to extract response functions, parametrized by the so-
called generalized polarizabilities (GPs) of the nucleon [3].
On the other side, VCS has also a close relation to elastic
electron scattering. More precisely this means, that the
physics addressed with VCS is the same as if one would
perform an elastic electron scattering experiment on a tar-
get placed between the plates of a capacitor or between
the poles of a magnet. In this way one studies the spatial
distributions of the polarization densities of the target, by
means of the GPs, which are functions of the square of
the four-momentum Q? transferred by the electron. The
GPs teach us about the interplay between nucleon-core
excitations and pion-cloud effects, and their measurement
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provides therefore a new test of our understanding of the
nucleon structure.

A first dedicated VCS experiment was performed at
the MAMI accelerator, and two combinations of the pro-
ton GPs have been measured [4]. Further experimental
programs are under way at the intermediate energy elec-
tron accelerators (JLab [5], MIT-Bates [6], MAMI [7]) to
measure the VCS observables.

At present, VCS experiments at low outgoing-photon
energies are analyzed in terms of low-energy expansions
(LEXSs). In the LEX, only the leading term (in the energy
of the real photon) of the response to the quasi-constant
electromagnetic field, due to the internal structure of the
system, is taken into account. This leading term depends
linearly on the GPs. As the sensitivity of the VCS cross-
sections to the GPs grows with the photon energy, it is
advantageous to go to higher photon energies, provided
one can keep the theoretical uncertainties under control
when approaching and crossing the pion threshold. The
situation can be compared to RCS, for which one uses a
dispersion relation formalism [8,9] to extract the polariz-
abilities at energies above pion threshold, with generally
larger effects on the observables.

It is the aim of the present paper to present in detail
such a dispersion relation (DR) formalism for VCS on a
proton target, which can be used as a tool to extract the
GPs from VCS observables over a larger energy range, into
the A(1232)-resonance region. In ref. [10], we have given
a first account of the DR predictions for the GPs. In this
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paper we present the formalism in detail and show the
results for the VCS observables.

In sect. 2, we start by specifying the kinematics and
the invariant amplitudes of the VCS process.

In sect. 3, we set up the DR formalism for the VCS
invariant amplitudes and show that, for 10 of the 12 VCS
invariant amplitudes unsubtracted, DRs hold.

In sect. 4, it is shown that the DR formalism provides
predictions for 4 of the 6 GPs of the proton.

In sect. 5, it is discussed how the s-channel disper-
sion integrals, which correspond to the excitation of 7V,
wwN,... intermediate states, are calculated. In the numer-
ical evaluation of the dispersion integrals, only the contri-
bution of IV states is taken into account.

In sect. 6, we show how to deal with the two VCS
invariant amplitudes for which one cannot write down an
unsubtracted DR. Our DR formalism involves two free
parameters, being directly related to two GPs, and which
are to be extracted from a fit to the experiment.

In sect. 7, we show the results in the DR formalism
for both unpolarized and polarized VCS observables be-
low and above pion threshold. We compare with existing
data and present predictions for planned and forthcoming
experiments.

Finally, we present our conclusions in sect. 8.

Several technical details on VCS invariant amplitudes
and helicity amplitudes are collected in three Appendices.

2 Kinematics and invariant amplitudes for
VCS

In this section, we start by briefly recalling how the VCS
process on the proton is accessed through the ep — epy
reaction. In this process, the final photon can be emit-
ted either by the proton, which is referred to as the fully
virtual Compton scattering (FVCS) process, or by the lep-
ton, which is referred to as the Bethe-Heitler (BH) process.
This is shown graphically in fig. 1, leading to the ampli-
tude T¢¢'7 of the ep — epy reaction as the coherent sum
of the BH and the FVCS process:

Tee"‘/ — TBH + TFVCS. (1)
The BH amplitude TBH is exactly calculable from QED if
one knows the nucleon electromagnetic form factors. The
FVCS amplitude TFVCS contains, in the one-photon ex-
change approximation, the VCS subprocess v*p — ~p.
We refer to ref. [1] where the explicit expression of the
BH amplitude is given, and where the construction of the
FVCS amplitude from the v*p — ~vp process is discussed.
In this paper, we present the details of how to construct
the amplitude for the v*p — p VCS subprocess, in a DR
formalism.

We characterize the four-vectors of the virtual (real)
photon in the VCS process v*p — ~vp by ¢ (¢') respec-
tively, and the four-momenta of initial (final) nucleons by
p (p'), respectively. In the VCS process, the initial pho-
ton is spacelike and we denote its virtuality in the usual
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Fig. 1. (a) FVCS process, (b) BH process.

way by ¢?> = —Q?. Besides 2, the VCS process can be
described by the Mandelstam invariants
u=(¢-p)% (2

s=(qg+p)? t=(q—-q)%

with the constraint

s+t+u=2M?— Q> (3)
where M denotes the nucleon mass. We furthermore in-
troduce the variable v, which changes sign under s < u
crossing

s—u

— 4
— ()
and which can be expressed in terms of the virtual photon
energy in the lab frame (E}P) as

V=

1

— Elab
v=50 1 0

(t-Q?). (5)
In the following, we choose @2, v and t as the independent
variables to describe the VCS process. In fig. 2, we show
the Mandelstam plane for the VCS process at a fixed value
of @* = 0.33 GeV?, at which the experiment of [4] was
performed.

The VCS helicity amplitudes can be written as

T/\’)\§V;k)\1\7 = _628H(Q7 A)EV* (q,7 A/)a(pl7 AQV)MP‘VU(Z% A]\7)7
(6)
with e the proton electric charge (e?/4m = 1/137.036).
The polarization four-vectors of the virtual (real) pho-
tons are denoted by ¢ (¢'), and their helicities by A (\),
with A = 0,4+1 and M = #1. The nucleon helicities are
AN, My = £1/2, and u, 4 are the nucleon spinors (as spec-
ified in Appendix C). The VCS tensor M*” in eq. (6)
can be decomposed into a Born (B) and a non-Born part

(NB):
MW = ME + ML. (7)

In the Born process, the virtual photon is absorbed on
a nucleon and the intermediate state remains a nucleon,
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t(Gev?)

v.(GeV).

Fig. 2. The Mandelstam plane for virtual Compton scattering
at Q% = 0.33 GeV2. The boundaries of the physical s-channel
region are © = 0° and © = 180° for v > 0, the u-channel
region is obtained by crossing, v — —v. The curves for © = 0°
and © = 180° intersect at v = 0, t = —Q?, which is the point
where the generalized polarizabilities are defined.

whereas the non-Born process contains all nucleon ex-
citations and meson-loop contributions. The separation
between Born and non-Born parts is performed in the
same way as described in ref. [3], to which we refer for
details. One can proceed by parametrizing the VCS ten-
sor of eq. (7) in terms of 12 independent amplitudes. In
ref. [11], a tensor basis was found so that the resulting
non-Born invariant amplitudes are free of kinematical sin-
gularities and constraints, which is an important property
when setting up a dispersion relation formalism. In detail,
we denote the tensor M*” as [11]

12
M = Z fi(Q2 v, t) pt, (8)
=1

where the 12 independent tensors pf are given in Ap-
pendix A. The 12 independent invariant amplitudes f; are
expressed in terms of the invariants Q2, v and t, but are
otherwise identical with the amplitudes used in [11].

The tensor basis pi"” of eq. (A.2) was chosen in [11]
such that the resulting invariant amplitudes f; are either
even or odd under crossing. Photon crossing leads to the
symmetry relations among the f; at the real photon point

fi(07yat) = +fi(0u_y7t)a (1217276711)7
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fi (0, v, t) = — fz (0, -V, t) s

while the amplitudes f3, f5, fs, fi2 do not contribute at
the real photon point, because the corresponding tensors
in eq. (A.2) vanish in the limit Q2 — 0.

Nucleon crossing combined with charge conjugation
provides the following constraints on the f; at arbitrary
virtuality Q?:

fi (Q27V7t):+fi (Q27—I/,t) )
fi (Q27V7t):_fi (sz_yat) )

When using dispersion relations, it will be convenient to
work with 12 amplitudes that are all even in v. Therefore,
we define new amplitudes F; (i = 1,...,12) as follows:

E(Q27Vat) = fl (Q2,l/,t), (7’: 13275767779a11712)7
1
E(Q27Vat) = ;fl (Qzal/?t)v (11)

satisfying F; (QQ, —v, t) =F; (QQ, v, t) fori =1,...,12. As
the non-Born invariant amplitudes fé\.]}is,w ~vforv — 0,
the definition of eq. (11) ensures that also all the non-Born
FNB (i = 1,...,12) are free from kinematical singularities.
The results for the Born amplitudes FP are listed in Ap-
pendix B.

From egs. (9) and (10), one furthermore sees that F7
and Fy vanish at the real photon point. Since 4 of the
tensors vanish in the limit Q% — 0, only the six ampli-
tudes Fy, Fy, Fy, Fg, F1p and Fi; enter in real Compton
scattering (RCS).

Dispersion relation formalisms for RCS were worked
out in refs. [8,9] in terms of another set of invariant
amplitudes, also free from kinematical singularities and
constraints and denoted as A;(v,t) (i = 1,...,6) (see Ap-
pendix A of ref. [8] for definitions). It is therefore useful to
relate the amplitudes F1 2.4.6,10,11(0,7,t) to the RCS am-
plitudes A4; (v,t) (i =1, ...,6). We find after some algebra
the following relations at Q% = 0:

(i =4,7,9,10), (9)
(i=1,2,5,6,7,9,11,12),

(i=3,4,8,10).  (10)

(i = 37 47 87 10)7

t — 403 V2
—62F1:—A1—< )A3+WA4+A67

CAM?
-’ F, = 72]\1/[2 {A?, + Ag — 4tMQA4] ,
—e’Fy = 21\142 Ay,
e g [ (S ]
—€2F10 = —ﬁ [AS_A6]7
e Fu =1 [AQ - %M + A6} ,(12)

where the charge factor —e? appears explicitely on the
Lh.s. of eq. (12), because this factor is included in the
usual definition of the A;. The values of the RCS invariant
amplitudes A; (¢ = 1,...,6) at v =t = 0 can be expressed
in terms of the scalar polarizabilities «, 8, and the spin
polarizabilities 71, y2,73, 74, as specified in ref. [8].
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3 Dispersion relations at fixed t and fixed Q?
for VCS

With the choice of the tensor basis of eq. (A.2), and taking
account of the crossing relation eq. (10), the resulting non-
Born VCS invariant amplitudes F; (i = 1,...,12) are free
of all kinematical singularities and constraints and are all
even in v, i.e. F;(Q? v,t) = F;(Q?, —v,t).

Assuming further analyticity and an appropriate high-
energy behavior, the amplitudes F;(Q?,v,t) fulfill unsub-
tracted dispersion relations with respect to the variable v
at fixed t and fixed virtuality Q2

+°°d , v Im F(Q2, V1)
v 2 _ 2

)

ReFNP(Q% 1) = 2P

Vthr

(13)
where we indicated explicitely that the Lh.s. of eq. (13)
represents the non-Born (NB) parts of the amplitudes.
Furthermore, in eq. (13), ImyF; are the discontinuities
across the s-channel cuts of the VCS process, starting at
the pion production threshold, which is the first inelastic
channel, i.e. vy, = my + (M2 +1/2+ Q?/2)/(2M), with
m, the pion mass.

Besides the absorptive singularities due to physical in-
termediate states which contribute to the r.h.s. of disper-
sion integrals as eq. (13), one might wonder if other sin-
gularities exist giving rise to imaginary parts. Such addi-
tional singularities could come from so-called anomalous
thresholds [12,13], which arise when a hadron is a loosely
bound system of other hadronic constituents which can go
on-shell (such as is the case of a nucleus in terms of its
nucleon constituents), leading to so-called triangular sin-
gularities. It was shown that in the case of strong confine-
ment within QCD, the quark-gluon structure of hadrons
does not give rise to additional anomalous thresholds [14,
15], and the quark singularities are turned into hadron
singularities described through an effective field theory.
Therefore, the only anomalous thresholds arise for those
hadrons which are loosely bound composite systems of
other hadrons (such as, e.g., the X' particle in terms of A
and 7). For the nucleon case, such anomalous thresholds
are absent, and the imaginary parts entering the disper-
sion integrals as in eq. (13) are calculated from absorptive
singularities (due to 7N, 77N, ... physical intermediate
states).

The assumption that unsubtracted dispersion relations
as in eq. (13) hold, requires that at high energies (v — oo
at fixed ¢ and fixed Q?) the amplitudes Im, F;(Q?, v, t) (i =
1,...,12) drop fast enough so that the integrals of eq. (13)
are convergent and the contribution from the semi-circle
at infinity can be neglected.

For the RCS invariant amplitudes Aq,...,Ag which ap-
pear on the r.h.s. of eq. (12), the Regge theory leads to
the following high-energy behavior for v — oo and fixed t:

Ay Ay ~ pom®) (14)
(A3 4 Ag) ~ vor®=2 (15)
Az, A5 ~ pom=2 (16)
Ay ~ pom®)=3, (17)
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where ap(t) < 0.5 (for ¢ < 0) is a meson Regge trajec-
tory, and where ap(t) is the Pomeron trajectory which
has an intercept ap(0) ~ 1.08. Note that the Pomeron
dominates the high-energy behavior of the combination of
As + Ag. From the asymptotic behavior of eqs. (14)—(17),
it follows that for RCS unsubtracted dispersion relations
do not exist for the amplitudes A; and As. The reason for
the divergence of the unsubtracted integrals is essentially
given by fixed poles in the ¢-channel, notably the exchange
of the neutral pion (for A3) and of a somewhat fictitious
o-meson (for A;) with a mass of about 600 MeV and a
large width, which models the two-pion continuum with
the quantum numbers I = J = 0.

We consider next the VCS amplitudes Fi, ..., Fia, in
the Regge limit (v — oo at fixed ¢ and fixed Q?) to deter-
mine for which of the amplitudes unsubtracted dispersion
relations as in eq. (13) exist. The high-energy behavior of
the amplitudes Fj is deduced from the high-energy behav-
ior of the VCS helicity amplitudes that are defined and
calculated in Appendix C. This leads, after some algebra,
to the following behavior in the Regge limit (v — oo, at
fixed ¢ and fixed Q?) !:

Fi, F5 ~ VaP(t)*Q, l,aM(t), (18)
Fs+4F; ~ ver®=20 pom®-1 (19)
By, Fs, Fig ~ vor®=2 pem®=2 (20)
Fr o~ por®=3 - pom®-1 (21)

Fy, Fg ~ por®=3  pou®)=2 (22)

Fy, Fg ~ Vap(t)—4, V@M(t)—Q’ (23)

Fy ~ por®=4  pou(®)=3 (24)

In egs. (18)—(24), we have indicated the high-energy be-
havior from the Pomeron (ap) and from the meson (o)
contributions separately. It then follows that for the two
amplitudes F; and F5, an unsubtracted dispersion inte-
gral as in eq. (13) does not exist, whereas the other ten
amplitudes on the L.h.s. of egs. (19)—(24) can be evaluated
through unsubtracted dispersion integrals as in eq. (13).

Having specified the VCS invariant amplitudes and
their high-energy behavior, we are now ready to set up
the DR formalism. First, we will show in sect. 4 that 4
of the 6 GPs of the nucleon can be evaluated using un-
subtracted DR. We will then discuss in sect. 5 how the
s-channel dispersion integrals of eq. (13) are evaluated. In
particular, unitarity will allow us to express the imaginary
parts of the VCS amplitudes in terms of 7N, 7w N,... in-
termediate states. Finally, we will show in sect. 6 how to
deal with the remaining two VCS invariant amplitudes for
which one cannot write unsubtracted DRs.

! We note that some of the F; in egs. (18)-(24) decrease
faster with increasing v than reported in ref. [10]. This is be-
cause a more detailed calculation has shown a cancellation in
the highest power of v for some of the F;, which leads to the
behavior of eqs. (18)—(24). However, this does not change the
conclusion obtained in ref. [10] that unsubtracted DR only exist
for 10 of the 12 F;. The asymptotic behavior of egs. (18)—(24)
only shows that for some of those 10 amplitudes, the dispersion
integrals converge even faster than anticipated earlier [10].
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4 Dispersion relations for the generalized
polarizabilities

The behavior of the non-Born VCS tensor MK} of

eq. (8) at low energy (¢ = |q'| — 0) but at arbi-
trary three-momentum ¢ = |q| of the virtual photon,
can be parametrized by six generalized polarizabilities
(GPs), which are functions of ¢ and which are denoted
by P L'»L)S(4) [3,16,11]. In this notation, p (p') refers
to the electric (2), magnetic (1) or longitudinal (0) nature
of the initial (final) photon, L (L’ = 1) represents the an-
gular momentum of the initial (final) photon, and S dif-
ferentiates between the spin-flip (S = 1) and non-spin-flip
(S = 0) character of the transition at the nucleon side. A
convenient choice for the 6 GPs has been proposed in [1]:

1:)(01,01)0((1)7 P(ll,ll)O(q)7 (25)
10(01,01)1(q)7 P(H’H)l(q), P(11,02)1(q)7 P(Ol’lg)l(q).(%)
In the limit ¢ — 0 for the GPs, one finds the following

relations with the polarizabilities (in Gaussian units) of
RCS [11]:

plot, 01)0( 0) = — 477\/?
s

62 ?73,

4w 20/2
Ce? 3\/_

pat, 11)0

P(Ol 12)1(0) _

P(11,02)1(0) ( 7o +'Y4),

P(Ol,Ol)l (O) — 07

PULIDL () = 0. (27)
In terms of invariants, the limit ¢’ — 0 at finite three-
momentum ¢ of the virtual photon corresponds to v — 0
and t — —Q? at finite Q2. One can therefore express the
GPs in terms of the VCS invariant amplitudes F; at the
point v = 0,t = —Q? for finite Q?, for which we introduce
the shorthand

F(Q%) = FN* (QPv=0,t = -Q?).

The relations between the GPs and the F;(Q?) can be
found in [11].

The present work aims at evaluating the GPs through
unsubtracted DRs of the type of eq. (13). We have seen
from the high-energy behavior that the unsubtracted DRs
do not exist for the amplitudes F; and Fj, but can be
written down for the other amplitudes. Therefore, unsub-
tracted DRs for the GPs will hold for those GPs which do
not depend on the two amplitudes F; and F5. However, the
amplitude F5 can appear in the form Fj5 + 4 F};, because
this combination has a high-energy behavior (eq. (20))
leading to a convergent integral. Among the six GPs we

(28)
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find four combinations which do not depend on F; and F:

___2 E+M I/QM(j
=7 = o

2 — — — —
X {g—zFQ-F (2F6+F9) —Flz},
0

_ L (BT
x {(Fs+F;+4F;) +4M Fi,},

1 pULINT _ 1 <E+ M)1/2 M qo
\/ﬁljo 3 E q2
{(Fs +F7+4F11) +4M (2Fs + Fy)},

V3 parom _ L (E+M @
2 6 E q?
x {qo (F5 + Fr + 4F11) +8M? (2Fs + Fy) }, (32)

where E = y/q? + M2 denotes the initial proton c.m. en-
ergy and go = M — E the virtual photon c.m. energy in
the limit ¢’ = 0. For small values of ¢, we observe the rela-
tion go ~ — ¢*/(2M). Furthermore, in the limit ¢’ = 0, the
value of Q? is always understood as being Q2 = ¢ — 3,
which we denote by Q2 for simplicity of the notation.
The four combinations of GPs on the L.h.s. of egs. (29)—
(32) can then be evaluated in a framework of unsubtracted
DRs through the following integrals for the corresponding

Fi(Q%):

ploLono 1 parano
2

p(01,01)1

(30)

poL12)1 _

X

(31)

poLI1

, Im F(Q2%, v

t=-) (33)

5 s-channel dispersion integrals

The imaginary parts of the amplitudes F; in eq. (13) are
obtained through the imaginary part of the VCS helicity
amplitudes defined in eq. (6). The latter are determined
by using unitarity. Denoting the VCS helicity amplitudes
by T%;, the unitarity relation takes the generic form

2Im, Ty; = »_(2m)*6%(Px — P)T} Txis (34)
X

where the sum runs over all possible intermediate states
X. In this work, we are mainly interested in VCS through
the A(1232)-resonance region. Therefore, we restrict our-
selves to the dominant contribution by only taking ac-
count of the 7N intermediate states. The influence of ad-
ditional channels, like the 77N intermediate states which
are indispensable when extending the dispersion formal-
ism to higher energies, will be investigated in a future
work.

The VCS helicity amplitudes can be expressed by the
F; in a straightforward manner, even though the calcula-
tion is cumbersome. The main difficulty, however, is the
inversion of the relation between the two sets of ampli-
tudes, i.e., to express the twelve amplitudes F; in terms of
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the twelve independent helicity amplitudes. To solve this
problem we proceeded in two different ways. First, the in-
version was performed numerically by applying different
algorithms. Second, we succeeded in obtaining an ana-
lytical inversion using a two-step procedure. To this end
we used an additional set of amplitudes, called B;, which
were introduced by Berg and Lindner [17] and which are
defined in Appendix A.2. Both the relations between the
B; and the F; on the one hand, and between the helic-
ity amplitudes and the B; on the other hand can be in-
verted analytically. The expressions of the F; amplitudes
in terms of the B; amplitudes are given in Appendix A.2,
and the expressions of the B; amplitudes in terms of the
VCS helicity amplitudes are given in Appendix C.3 (for
the definition of the VCS helicity amplitudes, see Appen-
dices C.1 and C.2). In our calculations, we checked that
the two methods to express the F; amplitudes in terms of
the VCS helicity amplitudes lead numerically to the same
results.

The imaginary parts of the s-channel VCS helicity
amplitudes are calculated through unitarity taking into
account the contribution from 7N intermediate states.
They are expressed in terms of pion photo- and electro-
production multipoles as specified in Appendix C.4. For
the calculation of the pion photo- and electro-production
multipoles, we use the phenomenological MAID analy-
sis [18], which contains both resonant and non-resonant
pion production mechanisms.

6 Asymptotic parts and dispersive
contributions beyond N

To evaluate the VCS amplitudes F; and Fj in an un-
subtracted DR framework, we proceed as in the case of
RCS [8]. This amounts to perform the unsubtracted dis-
persion integrals (13) for F; and F5 along the real v-axis
only in the range —vpmax < ¥ < 4+Vmax, and to close the
contour by a semi-circle with radius vy« in the upper half
of the complex v-plane, with the result

ReF}P(Q% v,t) = F™(Q% v t) + F5(Q% v,t), (35)

for (i = 1,5), where the integral contributions F/** (for
i =1,5) are given by

Vmax

4 V'ImgF;(Q2, v/, t)
V2 12

Fim(Q2 v, t)= 2P . (36)

Vthr

and with the contributions of the semi-circle of radius vy ax
identified with the asymptotic contributions (FP*, F2%).
Evidently, the separation between asymptotic and in-
tegral contributions in eq. (35) is specified by the value
of Vpax. The total result for FiNB is formally independent
of the specific value of vy.x. In practice, however, vy is
chosen to be not too large so that one can evaluate the
dispersive integrals of eq. (36) from threshold up to Vmax
sufficiently accurate. On the other hand, vy,.x should also
be large enough so that one can approximate the asymp-
totic contribution F?* by some energy-independent (i.e.
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v-independent) function. In the calculations, we there-
fore choose some intermediate value vpa.x ~ 1.5 GeV,
and parametrize the asymptotic contributions F* by t-
channel poles, which will be discussed next for the cases
of F2% and F}s.

6.1 The asymptotic contribution Fg®

The asymptotic contribution to the amplitude F5 predom-
inantly results from the ¢-channel 7%-exchange

F(Q*t) = —4F7 (Q%,1)
i 9grNN Fﬂ'o'y'y <Q2)

T M t —m2 ' (37)

FE(Q% v, t) ~

As mentioned before, the 7%-pole only contributes to the
amplitudes F5 and F}q, but drops out in the combina-
tion (F5 + 4 F11), which therefore has a different high-
energy behavior as expressed in eq. (19). In eq. (37), the
7NN coupling g.yn is taken from ref. [19]: g2 5 /(47)
= 13.73. Furthermore, in (37), Fro,, (Q?) represents the
79v*~ form factor. Its value at Q% = 0 is fixed by the
axial anomaly: Fro., (0) = 1/(47% fz) = 0.274 GeV ™1,
where f, = 0.0924 GeV is the pion decay constant. For
the Q%-dependence of Froyy (622)7 we use the interpola-
tion formula proposed by Brodsky-Lepage [20]

1/(47 fr)
1+Q%/(872 f2)°

which provides a rather good parametrization of the
n99*y form factor data over the whole Q? range, and
which leads to the asymptotic prediction at large Q2:
Froyy (Q*>) — 2 f2/Q%

When fixing the asymptotic contribution F#° through
its 7%-pole contribution as in eq. (37), one can determine
one more GP of the nucleon, in addition to the four com-
binations of eqs. (29)—(32). In particular, the GP P(11:11)1
can be expressed by

Fro (Q%) = (38)

2 g~
pL1n1 (Q2) _ _Q (E—l—M)l/ MG

3 E q?
x {F5(Q%) + o F12(Q%)} .

In fig. 3, we show the results of the dispersive contribu-
tion to the four spin GPs, and compare them to the re-
sults of the O(p?) heavy-baryon chiral perturbation theory
(HBChPT) [21,22], the linear o-model [23], and the non-
relativistic constituent quark model [24]. It is obvious that
the DR calculations show more structure in Q? than the
different model calculations.

The O(p?) HBChPT results predict for the GPs
PpOLODT and PALIDL 4 rather strong increase with Q2,
which would have to be checked by a O(p*) calculation.

The constituent quark model calculation gives negligi-
bly small contributions for the GPs P(01.0D1 apnd p(11.02)1
whereas the GPs PULIDL apd POLI2)1 peceive their dom-
inant contribution from the excitation of the A(1232)

(39)
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Fig. 3. Results for the spin-flip GPs excluding the 7°-pole
contribution in different model calculations, as functions of the
squared momentum transfer. The full curves correspond to the
dispersive 7N contribution. The dashed curves show the results
of O(p®) HBChPT [22], the dash-dotted curves correspond
to the predictions of the linear o-model [23], and the dotted
curves are the results of the non-relativistic constituent quark
model [24]. Note that the constituent quark model (CQM) re-
sults for POOMOVT and pULODT are multiplied (for visibility)
by a factor 100.

(M1 — M1 transition) and N* and A*-resonances (F1 —
M2 transition), respectively.

The linear o-model, which takes account of part of
the higher-order terms of a consistent chiral expansion,
in general results in smaller values for the GPs than the
corresponding calculations to leading order in HBChPT.

The comparison in fig. 3 clearly indicates that a satis-
fying theoretical description of the GPs over a larger range
in Q2 is a challenging task.

In fig. 4, we show the dispersive and 7’-pole con-
tributions to the 4 spin GPs as well as their sum. For
the presentation, we multiply in fig. 4 the GPs P(OL12)1
and P10 with @Q, in order to better compare the
Q?*-dependence when including the 7%-pole contribution,
which itself drops very fast with Q2. The 7°-pole does not
contribute to the GP P(OLOD1 byt is seen to dominate
the other three spin GPs. It is however possible to find,
besides the GP P(OL.OD1 the two combinations given by
egs. (31), (32) of the remaining three spin GPs, for which
the m9-pole contribution drops out [10].
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Fig. 4. Results for the spin-flip GPs as functions of the squared
momentum transfer. The dashed curves correspond to the dis-
persive 7N contribution, the dotted curves show the #°-pole
contribution, and the full curves are the sum of the dispersive
and 7w°-pole contributions. For comparison, we also show the
n%-pole contribution when setting the 7°y*~ form factor equal
to 1 (dash-dotted curves). Note that P©1°Y? has no n%-pole
contribution.

6.2 The asymptotic part and dispersive contributions
beyond N to F;

We next turn to the high-energy contribution to Fj. As
we are mainly interested in a description of VCS up to
A(1232)-resonance energies, we saturate the dispersion in-
tegrals by their 7N contribution. Furthermore, we will es-
timate the remainder by an energy-independent function,
which parametrizes the asymptotic contribution (i.e. the
contour with radius vyax in the complex v-plane), and all
dispersive contributions beyond the 7 /N-channel up to the
value vy = 1.5 GeV.

Before turning to the case of VCS, we briefly outline
the parametrization of the asymptotic part of Fj in the
case of RCS, and how one expresses it in terms of a polar-
izability, which is then extracted from a fit to experiment.

The asymptotic contribution to the amplitude F} orig-
inates predominantly from the ¢-channel 77 intermediate
states, and will be calculated explicitly in two model cal-
culations. In the phenomenological analysis, this contin-
uum is parametrized through the exchange of a scalar-
isoscalar particle in the t-channel, i.e. an effective “o”-
meson, as suggested in ref. [8]. For RCS, this leads to the
parametrization of the difference of FNEB and its 7N con-
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tribution, as an energy-independent function
FlNB(Oa v,t) — FlﬂN(Oal/a t) ~

[F1¥5(0,0,0) — FT™(0,0,0)] (40)

1—t/m2’

where F7N on the Lh.s and r.h.s are evaluated through a
dispersive integral as discussed in sect. 5. In eq. (40), the
effective “o”-meson mass m, is a free parameter in the
RCS dispersion analysis, which is obtained from a fit to
the t-dependence of RCS data, and turns out to be around
my ~ 0.6 GeV [8]. The value FB(0,0,0) is then consid-
ered as a remaining gobal fit parameter to be extracted
from experiment. It can be expressed physically in terms
of the magnetic polarizability §

4
F{(0,0,0) = = 6.

(41)
In RCS, one usually takes (a— ) as fit parameter instead
of B because the sum («a + ) at the real photon point
can be determined independently, and rather accurately,
through Baldin’s sum rule, which leads for the proton to
the phenomenological value [25]

a+F = (13.69 £ 0.14) x 10~*fm? (42)
Using a dispersive formalism as outlined above, the most
recent global fit to RCS data for the proton yields the fol-
lowing values for the electric and magnetic polarizabilities
of the proton [26]:

o =
0 =

where o and ( are expressed here and in the following in
units 10~% fm?.

From egs. (43), (44), one then obtains for the difference
(a — (), the following global average [26]:

12.1 £ 0.3 (stat.) F 0.4 (syst.) £ 0.3 (model), (43)
1.6 £ 0.4 (stat.) £ 0.4 (syst.) £ 0.4 (model), (44)

a—f = 10.5 £ 0.9 (stat. + syst.) + 0.7 (model) . (45)

The term F7V(0,0,0) in eq. (40), when calculated through
a dispersion integral, has the value

4 4

FrN(0,0,0) = ;giﬂﬂN = EQ (9.1 x 1074 fm?) . (46)
From the mN contribution 3™V of eq. (46), and the phe-
nomenological value 3 of eq. (44), one obtains the differ-

ence
(B—B™N)=-75, (47)

which enters in the r.h.s. of eq. (40). By comparing the
value of eq. (47) with the total value for § (eq.(44)), one
sees that the small experimental value of the magnetic
polarizability comes about by a near cancellation between
a large (positive) paramagnetic contribution (™) and a
large (negative) diamagnetic contribution (3 — ™), i.e.
the asymptotic part of F} parametrizes the diamagnetism.

Turning next to the VCS process, we proceed analo-
gously by parametrizing the non-Born term FVB(Q?, v, 1)
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beyond its wNN dispersive contribution, by an energy-
independent t-channel pole of the form

NB (2 TN ()2 N Q%)
Fl (Q 1V7t) - Fl (Q vl/vt) ~ W» (48)
where the parameter m, is taken as for RCS:

my ~ 0.6 GeV. The function f(Q?) in eq. (48) can be ob-
tained by evaluating the Lh.s of eq. (48) at the point where
the GPs are defined, i.e. v = 0 and t = —Q?, at finite Q2.
This leads to

F(Q%) = [F(Q) - FrY(@)] (1+@Q%/m37),

where we introduced the shorthand Fi(Q?) as defined in
eq. (28). F1(Q?) can be expressed in terms of the gen-
eralized magnetic polarizability P11110(Q?) of eq. (25)

as [11]
1/2
_\/g (EQ—’—EM> P(ll’ll)O(QQ) (50)

4 2F \'/?
=5 (o)A@,

where (3(Q?) is the generalized magnetic polarizability,
which reduces at Q? = 0 to the polarizability 3 of RCS.

Equations (48), (49) then lead to the following expres-
sion for the VCS amplitude FVE:

FlNB(Q27 V’ t) ~ 171—N (QZ’ V’ t)

+ [F(Q%) — FTY(@*)]

(49)

F(Q*) =

(51)

27,2
M’ (52)
1—t/m2
where the 7N contributions F7N(Q?,v,t) and FTN(Q?)
(or equivalently 3™V (Q?)) are calculated through a dis-
persion integral as outlined above. Consequently, the only
unknown quantity on the r.h.s. of eq. (52) is F1(Q?),
which can be directly used as a fit parameter at finite Q2.
This amounts to fit the generalized magnetic polarizability
B(Q?%) from VCS observables.

The parametrization of eq. (52) for Fy permits to ex-
tract 3(Q?) from VCS observables at some finite Q% and
over a larger range of energies with as few model depen-
dence as possible. In the following, we consider a con-
venient parametrization of the Q2-dependence of 3(Q?)
in order to provide predictions for VCS observables. For
this purpose we use a dipole form for the difference of
B(Q?%) — BN (Q?), which enters in the r.h.s. of eq. (52) via
eq. (51). This leads to the form

G-
(1+—Q2/A%>2

where the RCS value (3 — 3™V) on the r.h.s. is given by
eq. (47). The mass scale Ag in eq. (53) determines the Q-
dependence, and hence gives us the information of how the
diamagnetism is spatially distributed in the nucleon. Us-
ing the dipole parametrization of eq. (53), one can extract
Ag from a fit to VCS data at different Q2 values.

BQ%) - ™(Q?) = (53)
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To have some educated guess on the physical value of
Ag, we next discuss two microscopic calculations of the
diamagnetic contribution to the GP 5(Q?). The diamag-
netism of the nucleon is dominated by the pion cloud sur-
rounding the nucleon. Therefore, we calculate the diamag-
netic contribution through a dispersion relation estimate
of the t-channel w7 intermediate state contribution to Fj.
Such a dispersive estimate has been performed before in
the case of RCS [27,9], where it was shown that the asymp-
totic part of I, can be related to the yy — 7 — NN
process. The dominant contribution is due to the 7m in-
termediate state with spin and isospin zero (I = J = 0).
The generalization to VCS leads then to the identification
of F*% with the following unsubtracted DR in ¢ at fixed
energy v = 0:

_ 1 o0
P Q%) = -

™

Ithl (QQ, 0, t/)

dt’
t+Q?

2
4m?2

(54)

The evaluation of the imaginary part on the r.h.s. of
eq. (54), originating mainly from the 77 intermediate
state contribution, requires information on the subpro-
cesses vy — wm and mm — NN. For the latter we use
the extrapolation of ref. [28] for the mN-scattering am-
plitude to the unphysical region of positive ¢t. For the
v*y — mwm amplitude, we use the unitarized Born ampli-
tude, following ref. [9]. At the pion electromagnetic ver-
tex, the pion electromagnetic form factor is included. At
Q? = 0, it was found [9] that the unitarization procedure
enhances the 7y — 77 cross-section in the threshold re-
gion, compared to the Born result, which is required to
get agreement with the data. This becomes obvious from
the DR of eq. (54), where the imaginary part of F is
weighted by 1/¢, so that the threshold contribution domi-
nates the dispersion integral. The dispersive evaluation of
eq. (54) contains no free parameters as it uses as input
the vy — 7w and 7w — NN processes, and therefore pro-
vides a more microscopic model for the phenomenological
“o”-exchange. For RCS, the dispersion integral of eq. (54)
yields the value 52 ~ —7.3 x 10~4fm?>. However, the un-
subtracted dispersion integral can only be evaluated up
to —t = 0.778 GeV?, because the 7m — NN amplitudes
of ref. [28] were only determined up to this value, and
the dispersion integral of eq. (54) may not have fully con-
verged at this value. Therefore, one should consider the
near perfect agreement between the value of 3 from this
calculation with the phenomenological value of (47) as a
coincidence. However, our estimate indicates that the dis-
persive estimate through 77 t-channel intermediate states
provides the dominant physical contribution to the dia-
magnetism, and that it can be used to give a first guess
of the distribution of diamagnetism in the nucleon. With
this model we show the Q*-dependence of F{* in fig. 5.
To have a second microscopic calculation for compari-
son, we also show in fig. 5 an evaluation of F*5(Q?) in the
linear o-model (LSM) of ref. [23]. The LSM calculation
overestimates the value of F25(0) (or equivalently (,s) by
about 30% at any realistic value of m, (which is a free pa-
rameter in this calculation). However, as for the dispersive
calculation, it also shows a steep Q?-dependence.
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Fig. 5. Theoretical estimates of the asymptotic contribution
F?5: DR calculation [9] of the yv*y — 77 — NN process as
described in the text in sect. 6.2 (full curve); linear o-model
(LSM) calculation [23] with m, = 0.5 GeV (dotted curve) and
me = 0.7 GeV (dash-dotted curve). The dashed curves are
dipole parametrizations according to eq. (53), which are fixed
to the phenomenological value at Q* = 0 and are shown for two
values of the mass scale, Ag = 0.4 GeV (upper dashed curve,
nearly coinciding with the full curve) and Ag = 0.6 GeV (lower
dashed curve).

Furthermore, we compare in fig. 5 the two model cal-
culations discussed above with the dipole parametrization
for B(Q?%) — B™(Q?) of eq. (53) for the two values: Ag =
0.4 GeV and Ag = 0.6 GeV. It is seen that these values
are compatible with the microscopic estimates discussed
before. In particular, the result for Ag = 0.4 GeV is nearly
equivalent to the dispersive estimate of mm-exchange in the
t-channel. The value of the mass scale Ag is small com-
pared to the typical scale of Ap ~ 0.84 GeV appearing
in the nucleon magnetic (dipole) form factor. This reflects
the fact that diamagnetism has its physical origin in the
pionic degrees of freedom, i.e. is situated in the surface
and intermediate region of the nucleon.

6.3 Dispersive contributions beyond 7N to F;

Though we can write down unsubtracted DRs for all in-
variant amplitudes (or combinations of invariant ampli-
tudes) except for Fy and Fs, one might wonder about the
quality of our approximation to saturate the unsubtracted
dispersion integrals by w/N intermediate states only. We
shall show that this question is particularly relevant for
the amplitude F5, for which we next investigate the size
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of dispersive contributions beyond the wN-channel. We
start with the case of RCS, where one can quantify the
higher-dispersive corrections to Fy, because the value of
FYB at the real photon point can be expressed exactly
(see eqgs. (27), (29)) in terms of the scalar polarizability
sum (a + ) as

47 1

F}3P(0,0,0) = T @M

(a+p). (55)

The 7N dispersive contribution to (a 4+ 3) provides the
value
(a+p)™ =11.6, (56)

which falls short by about 15% compared to the sum
rule value of eq. (42). The remaining part originates
from higher-dispersive contributions (77N, ...) to Fs.
These higher-dispersive contributions could be calculated
through unitarity, by use of eq. (34), similarly to the 7N
contribution. However, the present data for the produc-
tion of those intermediate states (e.g., v*N — 7w N) are
still too scarce to evaluate the imaginary parts of the VCS
amplitude F5 directly. Therefore, we estimate the disper-
sive contributions beyond wIN by an energy-independent
constant, which is fixed to its phenomenological value at
v =t = 0. This yields

EYB(0,v,t) ~ F7N(0,v,1)

47 1 TN

2 M) [(04+5) — (a+p) } , (57)
which is an exact relation at v = t = 0, the point where
the polarizabilities are defined.

The approximation of eq. (57) to replace the dispersive
contributions beyond 7N by a constant can only be valid
if one stays below the thresholds for those higher con-
tributions. Since the next threshold beyond 7N is 77N,
the approximation of eq. (57) restricts us in practice to
energies below the A(1232)-resonance. If one wanted to
extend the DR formalism to energies above two-pion pro-
duction threshold, one could proceed in an analogous way
by replacing eq. (57) as follows:

FyP0,0,t) = FFN(0,v,t) + FF™N(0,0,1)

- F g 00 — et s

—(a+p)™] (58)
i.e. the energy dependence associated with 7N and mw N
dispersive contributions would have to be calculated ex-
plicitly and the remainder be parametrized by an energy-
independent constant fixed to the phenomenological value
of (a+f3). Equation (58), and eq. (40) for FNB modified in
an analogous way to include the mw N dispersive contribu-
tions, would then allow an extension of the DR formalism
to energies into the second resonance region. Such an ex-
tension remains to be investigated in a future work, but
because of the present lack of experimental input for the
wmw N-channel, we restrict ourselves in the present work to
energies up to the A(1232)-resonance region.
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We next consider the extension to VCS, and focus
our efforts to describe VCS into the A(1232)-resonance
region. Analogously to eq. (57) for RCS, the dispersive
contributions beyond m/N are approximated by an energy-
independent constant. This constant is fixed at arbitrary
Q? v =0, and t = —Q?, which is the point where the
GPs are defined. One thus obtains for F)\B

FRP(Q% v )= FFN(Q v, )+ [F2(Q%) ~ F M (Q%)], (59)

where F5(Q?) is defined as in eq. (28), and can be ex-
pressed in terms of GPs. In this paper, we saturate the
three combinations of spin GPs of egs. (30)—(32) by their
wN contribution, and calculate the fourth spin GP of
eq. (39) through its 7N contributions plus the m%-pole
contribution as shown in fig. 4. Therefore, we only con-
sider dispersive contributions beyond the 7N intermedi-
ate states for the two scalar GPs, which are then two fit
quantities that enter our DR formalism for VCS. In this
way, and by using eq. (29), one can write the difference

F(Q?) — FFN(Q?) entering in the r.h.s. of eq. (59) as
follows:
_ N () Ar V2 6 1
Fy(Q%) — FFN(Q?) ~ 3 Ex M ) 2 20
x{ [(@Q%) — a™(Q?)]
+ [B(@Q%) ﬁﬂN(Q )]}, (60)

where 3(Q?) is the generalized magnetic polarizability of
eq. (51). Furthermore, a(Q?) is the generalized electric
polarizability which reduces at Q% = 0 to the electric
polarizability a of RCS, and which is related to the GP
P(01’01)0(Q2) of eq. (25) by

P(01,01)0(Q2) = 47T

(Q2) (61)

We stress that egs. (52) and (59) are intended to ex-
tract the two GPs a(Q?) and B(Q?) from VCS observ-
ables minimizing the model dependence as much as pos-
sible. As in the previous case for 3(Q?), we next con-
sider a convenient parametrization of the Q2-dependence
of a(Q?) in order to provide predictions for VCS observ-
ables. Again we propose a dipole form for the difference

a(Q?) — a™(Q?) which enters in the r.h.s. of eq. (60),
2y aN(H2\ _ (o —a™)
@)~ (@) = (T (62)

where the Q?-dependence is governed by the mass scale
Aq, again a free parameter. In eq. (62), the RCS value

(a—a™) =96, (63)
is obtained from the phenomenological value of eq. (43)
for o, and from the calculated 7N contribution: o™ =
2.5. Using the dipole parametrization of (62), one can then
extract the free parameter A, from a fit to VCS data at
different Q2 values.
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7 Results for ep — ep~ observables and
discussion

Having set up the dispersion formalism for VCS, we now
show the predictions for the different ep — epy observ-
ables for energies up to the A(1232)-resonance region.
The aim of the experiments is to extract the 6 GPs of
egs. (25), (26) from both unpolarized and polarized ob-
servables. We will compare the DR results, which take
account of the full dependence of the ep — epy observ-
ables on the energy (¢') of the emitted photon, with a
low-energy expansion (LEX) in ¢’. In the LEX of observ-
ables, only the first three terms of a Taylor expansion in
¢’ are taken into account.

In such an expansion in ¢’, the experimentally ex-
tracted VCS unpolarized squared amplitude M®*P takes
the form [3]

exp
M
12
q

Me_Xp ex
+ Tl +MJP+0(q).

MEP = (64)

Due to the low-energy theorem (LET), the threshold coef-
ficients MY and M®Y are known (see ref. [3] for details).
The information on the GPs is contained in Mg”, which
contains a part originating from the (BH + Born) am-
plitude and another one which is a linear combination of
the GPs, with coefficients determined by the kinematics.
It was found in ref. [3] that the unpolarized observable
MG can be expressed in terms of 3 structure functions
Prr(q), Prr(q), and Prr(g) by

MEP — pMBH+Born - 2K2{vl [ePrr(q) — Prr(q))

+ (Uz - %Uz’,) V2e (1 + €)PLT(Q)}7 (65)

where K5 is a kinematical factor, € is the virtual pho-
ton polarization (in the standard notation used in elec-
tron scattering), and vq, ve, vs are kinematical quantities
depending on € and g as well as on the c.m. polar and
azimuthal angles (@ and ¢, respectively) of the produced
real photon (for details see ref. [1]).

After some algebra, one finds that the 3 unpolarized
observables of eq. (65) can be expressed in terms of the 6
GPs as [3,1]

Prr = —2V6MGg P00, (66)

2
Prp = _SGMg_ (P(11,11)1 . \/itjoP(ole)l) ’ (67)
0

Pop— S@GEP(H,M)O + ;%GMP(OLOI)17 (68)
0

2 Q
where Gg and Gy stand for the electric and magnetic
nucleon form factors Gg(Q?) and Gy (Q?), respectively.
In fig. 6, we show the calculations of Pr; — Prr/e
and Prp, which have been measured at MAMI at Q? =
0.33 GeV? [4]. The virtual photon polarization ¢ is fixed
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to the experimental value (¢ = 0.62), and for the electro-
magnetic form factors in eqgs. (66)—(68) we use the Hohler
parametrization [29] as in the analysis of the MAMI ex-
periment [4].

In the lower panel of fig. 6, the Q?-dependence of the
VCS response function Ppr is displayed, which reduces
to the magnetic polarizability § at the real photon point
(Q? = 0). At finite @2, it contains both the scalar GP
B(Q?) and the spin GP POLOD! a5 seen from eq. (68). It
is obvious from fig. 6 that the structure function Prp re-
sults from a large dispersive 7N contribution and a large
asymptotic contribution (to ) with opposite sign, lead-
ing to a relatively small net result. At the real photon
point, the small value of 3 is indeed known to result from
the near cancellation of a large paramagnetic contribution
from the A-resonance, and a large diamagnetic contribu-
tion (asymptotic part). The latter is shown in fig. 6 with
the parametrization of eq. (53) for the values Ag = 0.4
and Ag = 0.6 GeV, which were also displayed in fig. 5.
Due to the large cancellation in Py, its Q2-dependence
is a very sensitive observable to study the interplay of the
two mechanisms. In particular, one expects a faster fall-off
of the asymptotic contribution with Q? in comparison to
the 7N dispersive contribution, as discussed before. This
is already highlighted by the measured value of Prp at
Q? = 0.33 GeV? [4], which is comparable to the value of
Prr at Q% = 0 [26]. As seen from fig. 6, this points to an
interesting structure in the Q? region around 0.1 GeV?,
where forthcoming data are expected from an experiment
at MIT-Bates [6].

In the upper panel of fig. 6, we show the @3-
dependence of the VCS response function Pr; — Prr/e,
which reduces at the real photon point (Q? = 0) to the
electric polarizability o. At non-zero Q?, Pry, is directly
proportional to the scalar GP a(Q?), as seen from eq. (66),
and the response function Prp of eq. (67) contains only
spin GPs. As is shown by fig. 6, the 7N dispersive con-
tribution to « and to the spin GPs are smaller than
the asymptotic contribution to «, which is evaluated for
Ay =1 GeV. At Q? = 0, the 7N dispersive and asymp-
totic contributions to « have the same sign, in contrast to
[ where both contributions have opposite sign and largely
cancel each other in their sum.

The response functions Prr and Ppr, — Ppr /e were ex-
tracted in [4] by performing a LEX to VCS data, according
to eq. (65). To test the validity of such a LEX, we show in
fig. 7 the DR predictions for the full energy dependence
of the non-Born part of the ep — ep~y cross-section in the
kinematics of the MAMI experiment [4]. This energy de-
pendence is compared with the LEX, which predicts a lin-
ear dependence in ¢’ for the difference between the exper-
imentally measured cross-section and its BH + Born con-
tribution. The result of a best fit to the data in the frame-
work of the LEX is indicated by the horizontal bands in
fig. 7 for the quantity (d°c — d>cBH+Bom) /@g/ where @ is
a phase-space factor defined in [3]. The fivefold differential
cross-section d°¢ is differential with respect to the electron
lab energy and lab angles and the proton c.m. angles, and
stands in all of the following for do / dkf,, df2F,, d2? . It
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Upper left panel: dispersive mIN contribution of the GP «
(full curve), dispersive N contribution of the spin-flip GPs
(dashed curve), and the asymptotic contribution of a accord-
ing to eq. (62) with Ao = 1 GeV (dotted curve). Upper right
panel: total result for Pr;, — Prr/e (sum of the three contri-
butions on the upper left panel) for Ao = 1 GeV (full curve)
and Ao = 1.4 GeV (dashed curve). Lower left panel: dispersive
7N contribution of the GP § (full curve), contribution of the
spin-flip GPs (dashed curve), and the asymptotic contribution
of 8 according to eq. (53) with Ag = 0.6 GeV (dotted curve).
Lower right panel: total result for Prr, for Ag = 0.7 GeV
(dotted curve), Ag = 0.6 GeV (full curve), and Ag = 0.4 GeV
(dashed curve). The RCS data are from ref. [26], and the VCS
data at Q% = 0.33 GeV? from ref. [4].

is seen from fig. 7 that the DR results predict only a mod-
est additional energy dependence up to ¢’ ~ 0.1 GeV/c
and for most of the photon angles involved, and therefore
seems to support the LEX analysis of [4]. Only for for-
ward angles, ©5" ~ 0, which is the angular range from
which the value of Ppr is extracted, the DR calculation
predicts a stronger energy dependence in the range up to
¢ ~ 0.1 GeV/c¢, as compared to the LEX. It will be in-
teresting to perform a best fit of the MAMI data using
the DR formalism, extract the two fit parameters a/(Q?)
and ($(Q?), and consequently the values of Pr; — Prr/e
and Prp, respectively. Such a best fit using the DR for-
malism is planned in a future investigation. Increasing the
energy, we show in fig. 8 the DR predictions for photon
energies in the A(1232)-resonance region. It is seen that
the ep — epy cross-section rises strongly when crossing
the pion threshold. In the dispersion relation formalism,
which is based on unitarity and analyticity, the rise of the
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Fig. 7. (d°c — d°cBT+Bo™) /®¢/ for the ep — epy reaction as a
function of the outgoing-photon energy ¢’ in MAMI kinemat-
ics: € = 0.62, ¢ = 0.6 GeV, and for different photon c.m. an-
gles ©. The data and the shaded bands, representing the best
fit to the data within the LEX formalism, are from ref. [4].
The solid curves are the DR results taking into account the
full ¢’-dependence of the non-Born contribution to the cross-
section. The asymptotic contributions are calculated according
to egs. (53), (62), with Ag = 0.6 GeV and A, = 1 GeV, re-
spectively.

cross-section with ¢’ below pion threshold, due to virtual
wN intermediate states, is connected to the strong rise
of the cross-section with ¢ when a real 7N intermediate
state can be produced. It is furthermore seen from fig. 8
(lower panel) that the region between pion threshold and
the A-resonance peak displays an enhanced sensitivity to
the GPs through the interference with the rising Compton
amplitude due to A-resonance excitation. For example, at
¢ ~ 0.2 GeV /¢, the predictions for Prr in the lower right
panel of fig. 6 for Ag = 0.4 GeV and Ag = 0.6 GeV give
a difference of about 20% in the non-Born squared ampli-
tude. In contrast, the LEX prescription results in a relative
effect for the same two values of P of about 10% or less.
This is similar to the situation in RCS, where the region
between pion threshold and the A-resonance position also
provides an enhanced sensitivity to the polarizabilities and
is used to extract those polarizabilities from data [8,9] us-
ing a DR formalism. Therefore, the energy region between
pion threshold and the A-resonance seems promising to
measure VCS observables with an increased sensitivity to
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Fig. 8. Upper panel: The differential cross-section for the re-
action ep — epy as a function of the outgoing-photon energy ¢
in MAMI kinematics: € = 0.62, ¢ = 0.6 GeV, and for © = 0°,
in plane (¢ = 0°). The BH + Born contribution is given by
the dash-dotted curve. The total DR results are obtained with
the asymptotic parts of egs. (53), (62), using a fixed value of
Ao = 1 GeV and for the three values of Ag as displayed in
the lower right plot of fig. 6, i.e. Ag = 0.7 GeV (dotted curve),
Ag = 0.6 GeV (solid curve), and Ag = 0.4 GeV (dashed curve).
Lower panel: Results for (d°c — d°cBHTB°™) /@¢’ as functions
of ¢’. The DR calculation taking into account the full energy
dependence of the non-Born contribution (thick curves) are
compared to the corresponding results within the LEX formal-
ism (thin horizontal curves). The curves in the lower panel
correspond to the same values of A, and Ag as in the upper
panel. The data are from ref. [4].

the GPs. The presented DR formalism can be used as a
tool to extract the GPs from such data. When increas-
ing the value of &, the Born and non-Born parts of the
ep — epy cross-section increase relative to the BH contri-
bution, due to the increasing virtual photon flux factor [1].
This is seen by comparing the non-Born cross-section in
fig. 8 (corresponding to e = 0.62), with the result for ¢ =
0.8 at the same value of ¢ and O3, as is shown in fig. 9.
Besides giving rise to higher non-Born cross-sections, an
experiment at a higher value of ¢ (keeping ¢ fixed) also
allows to disentangle the unpolarized structure functions
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Prr(q) and Prr(q) in eq. (65). This will provide a nice
opportunity for the MAMI-C facility where such a higher
e value (as compared to the value £ = 0.62 of the first VCS
experiment of ref. [4]) will be reachable for the same value
of ¢q. Recently, VCS data have also been taken at JLab [5]
both below pion threshold at Q? = 1 GeV? [30,31], and at
Q? = 1.9 GeV? [32,31], as well as in the resonance region
around Q% = 1 GeV? [33].

The extraction of GPs from VCS data at these higher
values of Q2 requires an accurate knowledge of the nu-
cleon electromagnetic form factors (FFs) in this region.
For the proton magnetic FF G},(Q?), we use the Bosted
parametrization [34], which has an accuracy of around 3%
in the Q? region of 1-2 GeV?2. The ratio of the proton elec-
tric FF G%, to the magnetic FF GY; was recently measured
with high accuracy in a polarization experiment at JLab
in the Q? range 0.4-3.5 GeV? [35]. It was found in [35]
that G% drops considerably faster with Q% than G%;. In
the region of interest here, i.e. Q2 in the 1-2 GeV? range,
the JLab data of ref. [35] are well described by the fit [30]

ppGR(Q%)
Gl (@)
where p,, is the proton magnetic moment. In the fol-

lowing VCS calculations at Q2 = 1 GeV?, we use the
parametrization of eq. (69) to specify G}, (with the Bosted

~1-0.13(Q%)* +0.028(Q*)*, (69)
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Fig. 10. Left panels: The differential cross-section for the
reaction ep — epy as a function of the photon scattering
angle and at different values of the outgoing-photon energy
¢ in JLab kinematics. Right panels: ratio of cross-sections
(do — doBH+Berny /qgBH+Born Dagh dotted curves on the left
panels: BH + Born contribution. The DR results are dis-
played (on both left and right panels) with the asymptotic
terms parametrized as in egs. (62), (53), using the values:
Ao =1 GeV and Ag = 0.6 GeV (full curves), A, = 1 GeV
and Ag = 0.4 GeV (dashed curves), Ao = 1.4 GeV and
Ag = 0.6 GeV (dotted curves).

parametrization for G§;). In fig. 10, we show the DR pre-
dictions for the ep — epy reaction at Q% = 1GeV?, for
three values of the outgoing-photon energy, below pion
threshold. In these kinematics, data have been taken at
JLab and, at the time of writing this paper, preliminary
results on VCS cross-sections and GPs have been reported
in ref. [30]. For those kinematics, we show in fig. 10 the
differential cross-sections as well as the non-Born effect
relative to the BH + Born cross-section. It is seen from
fig. 10 that the sensitivity to the GPs is largest where
the BH + Born cross-section becomes small, in particular
in the angular region between 0° and 50°. In fig. 10, we
show the non-Born effect for different values of the polar-
izabilities. For P, the calculation for the N dispersive
contribution at Q% = 1 GeV? gives

PIY (1 GeV?) = —0.3 GeV ™2, (70)
leading to the total results for Py, within the DR formal-
ism

Prp(1 GeV?) = 42.3 GeV ™2, for (Aq =1 GeV), (71)
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Pri(1 GeV?) = 44.2 GeV ™2, for (A, = 1.4 GeV). (72)

For Prr, the calculation for the 7N dispersive contribu-
tion at Q% =1 GeV? gives

PFN(1 GeV?) = —0.9 GeV ™2, (73)

leading to the total results for Ppp within the DR formal-
ism

Prr(1 GeV?)=—0.6 GeV 2, for(Ag=0.6 GeV), (74)
Prr(1 GeV?)=—-0.9 GeV 2, for(Ag=0.4 GeV). (75)

It will be interesting to compare the sensitivity of the
cross-sections to these values of the GPs, as displayed in
fig. 10, to the JLab data which have been taken in this
region [30]. The deviation of the experimental values from
the dispersive 7N values of (70) for Pry and of (73) for
Prr will provide us with interesting information, allow-
ing to test our understanding of the electric and magnetic
polarizability at this large virtuality of Q% = 1 GeV?2.
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lower panel correspond to the same values of A, and Ag as in
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For the same kinematics as in fig. 10, we compare in
fig. 11 the DR calculation for the non-Born cross-section
with the corresponding result using the LEX. It is seen
that the deviation of the DR results from the LEX be-
comes already noticeable for ¢’ = 75 MeV, over most of the
photon angular range. Therefore, the DR analysis seems
already to be needed at those lower values of ¢’ to extract
GPs from the JLab data.

In fig. 12, we increase the energy through the A(1232)-
resonance region, and show the results for the ep — epy
reaction at Q? = 1 GeV? and at a backward angle. We dis-
play the calculations of the cross-section and of the non-
Born effect for the values in (71) and (72) for P, and
for the value in (74) for Prr. One sees a sizeable sensi-

tivity to Prr in this backward angle cross-section, and it
therefore seems very promising to extract information on
the electric polarizability from such anticipated data. Un-
til now, we discussed only unpolarized VCS observables.
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Fig. 13. VCS double-polarization asymmetry (polarized elec-
tron, recoil proton polarization along either the z- or z-
directions in the c.m. frame) in MAMI kinematics as a function
of the photon scattering angle. The dotted curves correspond
to the BH 4+ Born contribution. The dispersion results for the
total BH 4+ Born + non-Born cross-section are shown for the
values of the mass scale Ao = 1 GeV, Ag = 0.6 GeV (full
curves) and Ao = 1 GeV, Ag = 0.4 GeV (dashed curves). To
see the effect of the m°-pole contribution, we also show the re-
sults for the values A, =1 GeV, Ag = 0.6 GeV, when turning
off the 7°-pole contribution (dash-dotted curves).

An unpolarized VCS experiment gives access to only 3
combinations of the 6 GPs, as given by eqs. (66)—(68). It
was shown in ref. [36] that VCS double-polarization ob-
servables with polarized lepton and polarized target (or
recoil) nucleon, will allow us to measure three more com-
binations of GPs. Therefore a measurement of unpolar-
ized VCS observables (at different values of ¢) and of 3
double-polarization observables will give the possibility to
disentangle all 6 GPs. The VCS double-polarization ob-
servables, which are denoted by AM(h, i) for an electron
of helicity h, are defined as the difference of the squared

amplitudes for recoil (or target) proton spin orientation

in the direction and opposite to the axis i (i = z,y, 2)

(see ref. [36] for details). In a LEX, this polarized squared
amplitude yields

AMEP
q/2

AMEP
q/

AMP =

+AMSP +0(q).  (76)

Analogous to the unpolarized squared amplitude (64),
the threshold coefficients AM®P AM®P are known due

to the LET. It was found in refs. [36,1] that the po-
larized squared amplitude AMG® can be expressed in

terms of three new structure functions P7,(q), Py%(q),
and PLJf(q) These new structure functions are related to
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the spin GPs according to [36,1]

3 3M

Pip = ;;OQ Gy POLODT TQGE P(11,11)1’ (77)
/ 3 3M ¢?

P = _§QGM pOLONT | —qZGEP(“v“)l, (78)
, 3 3

P = 2‘1qu Gu (P(Ol,()l)l _ \/;QO p(11,02)1> . (79)

While P, and Pj% can be accessed by in-plane kine-

matics (¢ = 0°), the measurement of PjL requires an
out-of-plane experiment. In fig. 13, we show the disper-
sion results for the double-polarization observables, with
polarized electron and by measuring the recoil proton po-
larization either along the virtual photon direction (z-
direction) or parallel to the reaction plane and perpen-
dicular to the virtual photon (z-direction). The double-
polarization asymmetries are quite large (due to a non-
vanishing asymmetry for the BH + Born mechanism), but
our DR calculations show only small relative effects due
to the spin GPs below pion threshold. Although these ob-
servables are tough to measure, a first test experiment is
already planned at MAMI [7].

When measuring double-polarization observables
above pion threshold, one can enhance the sensitivity to
the GPs, as we remarked before for the unpolarized ob-
servables. In fig. 14, we show as an example the double-
polarization asymmetry in MAMI kinematics for polar-
ized beam and recoil proton polarization measured along
the virtual photon direction as a function of the outgoing-
photon energy through the A(1232) region. The A(1232)-
resonance excitation clearly shows up as a deviation from
the LEX result above about ¢’ = 100 MeV. As discussed
before, VCS polarization experiments below pion thresh-
old, require the measurement of double-polarization ob-
servables to get non-zero values, because the VCS ampli-
tude is purely real below pion threshold. However, when
crossing the pion threshold, the VCS amplitude acquires
an imaginary part due to the coupling to the w N-channel.
Therefore, single-polarization observables become non-
zero above pion threshold. A particularly relevant observ-
able is the electron single spin asymmetry (SSA), which
is obtained by flipping the electron beam helicity [1]. For
VCS, this observable is mainly due to the interference of
the real BH + Born amplitude with the imaginary part
of the VCS amplitude. In fig. 15, the SSA is shown for
two kinematics in the A(1232) region. As the SSA van-
ishes in plane, its measurement requires an out-of-plane
experiment, such as is accessible at MIT-Bates [37]. Our
calculation shows firstly that the SSA is quite sizeable in
the A(1232) region. Moreover, it displays only a rather
weak dependence on the GPs, because the SSA is mainly
sensitive to the imaginary part of the VCS amplitude.
Therefore, it provides an excellent cross-check of the dis-
persion formalism for VCS, in particular by comparing
at the same time the pion and photon electro-production
channels through the A region.
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Fig. 14. Upper panel: VCS double-polarization asymmetry
(polarized electron, recoil proton polarization along the z-
direction in the c.m. frame) in MAMI kinematics (same value
of ¢ and ¢ as in fig. 13) as a function of the outgoing-photon
energy at a fixed photon scattering angle © = —50°, in plane
(¢ = 0°). The middle panel is the corresponding difference of
polarized cross-sections and the lower panel is the non-Born
contribution to the corresponding polarized squared matrix el-
ement (according to eq. (76)). The dotted curves correspond
to the BH + Born contribution. The dispersion results for the
total BH + Born + non-Born cross-section (full curves) are
calculated using the values A, = 1 GeV and Ag = 0.6 GeV.
The dashed curves are the corresponding results obtained from
the LEX. To see the effect of the 7°-pole contribution, we also
show the results of the dispersion calculation, when turning off
the 7%-pole contribution (dash-dotted curves).

8 Conclusions

In this work, we have presented a dispersion relation (DR)
formalism for VCS off a proton target. Such a formalism
can serve as a tool to extract generalized polarizabilities
(GPs) from VCS observables over a larger energy range.
The way we evaluated our dispersive integrals using m/N
intermediate states, allows to apply the present formal-
ism for VCS observables through the A(1232)-resonance
region.

The presented DR, framework, when applied at a fixed
value of @2, involves two free parameters which can be
expressed in terms of the electric and magnetic GPs, and
which are to be extracted from a fit to VCS data. We
proposed a parametrization of these two free parameters
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Fig. 15. Electron single spin asymmetry (SSA) for VCS at
Q? = 0.12 GeV?, for two kinematics in the A(1232) region:
W = 1.232 GeV, ¢ = 0.75 (upper plots) and W = 1.17 GeV,
e = 0.81 (lower plots). In both cases the SSA is shown as a
function of the photon scattering angle for out-of-plane angle
¢ = 45°, as accessible at MIT-Bates [37]. The full dispersion
results are shown for the values: A, = 1 GeV, Ag = 0.6 GeV
(full curves), Aa =1 GeV, Ag = 0.4 GeV (dashed curves), and
Ao = 1.4 GeV, Ag = 0.6 GeV (dotted curves).

(asymptotic terms to o and ) in terms of a dipole Q-
dependence, and investigated the sensitivity of VCS ob-
servables to the corresponding dipole mass scales.

We confronted our dispersive calculations with exist-
ing VCS data taken at MAMI below pion threshold. Com-
pared to the low-energy expansion (LEX) analysis which
was previously applied to those data, we found only a
modest additional energy dependence up to photon ener-
gies of around 100 MeV, which supports such a LEX anal-
ysis. When increasing the photon energy, our dispersive
calculations show that the region between pion threshold
and the A-resonance peak displays an enhanced sensitivity
to the GPs. It seems therefore very promising to measure
VCS observables in this energy region in order to extract
GPs with an enhanced precision.

Furthermore, we showed our DR predictions for VCS
data at higher values of 2, in the range Q% = 1-2 GeV?,
where VCS data have been taken at JLab which are
presently under analysis. It was found for the JLab kine-
matics that the DR results show already a noticeable de-
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viation from the LEX result even for outgoing-photon en-
ergies as low as 75 MeV. Therefore, the DR analysis seems
already to be needed below pion threshold to extract GPs
from the JLab data. We also showed predictions at (>
= 1 GeV? at higher outgoing-photon energies, through
the A(1232)-resonance region, where data have also been
taken at JLab. At backward scattering angles, we found a
very sizeable sensitivity to the generalized electric polariz-
ability. The two different JLab data sets, both below pion
threshold and in the A region, at the same value of @Q? (in
the range Q% = 1-2 GeV?) will provide a very interesting
check on the presented DR formalism to demonstrate that
a consistent value of the GPs can be extracted by a fit in
both energy regions.

Besides unpolarized VCS experiments, which give ac-
cess to a combination of 3 (out of 6) GPs, we investigated
the potential of double-polarization VCS observables. Al-
though such double-polarization experiments with polar-
ized beam and recoil proton polarization are quite chal-
lenging, they are needed to access and quantify the re-
maining three GPs. Using the DR formalism one can also
analyze these observables above pion threshold.

Finally, above pion threshold also single-polarization
observables are non-zero. In particular, the electron sin-
gle spin asymmetry, using a polarized electron beam, is
sizeable in the A region and can provide a very valuable
cross-check of the VCS dispersion calculations, as it is
mainly sensitive to the imaginary part of the VCS ampli-
tude, which is linked through unitarity to the m N-channel.
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Appendix A. Gauge-invariant tensor basis for
VCS

Appendix A.1. VCS tensor basis p!"”

In writing down a gauge-invariant tensor basis for VCS, it
will be useful to introduce the following symmetric combi-
nations of the four-momenta (in the notations of sect. 2):

1
K=-(g+4q).

> (A1)

1
P = 5(29-5-10/)7

The 12 independent tensors p!” entering the VCS am-
plitude of eq. (8), that were introduced in [11](based on
the work of [38]), are given by

o =—q-d'g" +q"q",
pgy — —(QMI/)Qg“V _ 4q'q/PuPV
+4AMv (P”q” + P”q/"),
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+i4Mq-q' 75" P Koyp,
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+Mv (q"‘v” - q”v“),

Q? / /

Mvq"q” + —- (P“q” —Pq ”) —qq P"q"
~Mq"q" K+ Mq-q' ¢"v"
+%Q2 (q’”v” — CI”’Y”)
*% @ (Q’“U”“Ka —q"0" Ko + q@’a‘”),
2Mv (P“q” — P”q'“)
—2Mgq-¢ (pu,y'/ — pv,yu)
+2M?y (q’“’y” — q”v“)
+i2q-q (PHUWKQ + PVUWKQ)
—i2Mv (q’“U”O‘Ku + q"a“o‘Ka)7
—4My " 4+ 2 (P”q” + P”q'”) AM g K
—2M (q’“v” + q”v")
<20 (¢"0" Ko = ¢"0" Ko + 4:d/0" )
4 (P“q" + P”q’“)K— AMv (q’*w" + q”’y“)
+idq-q s " P Ko,

2Q%P*PY + 2Mv PY¢" — 2MQ?PH~Y

—2M?v gty +i2My MoV K,
+iQ? (PﬂamKa + PYole K, — My UW)
—i MQ*y5 " P K oy, (A.2)

where we follow the conventions of Bjorken and Drell [39],
i.e. oM =1i/2[y*,v"] and in particular €123 = +1.

Appendix A.2. VCS invariant amplitudes B; of Berg
and Lindner

For further reference, it also turns out to be useful to
work with an alternative tensor basis for VCS, introduced
by Berg and Lindner [17].

One starts by defining, besides the four-vectors P and
K of eq. (A.1), the combination

1

and constructs from K, P, and L, the following four-
vectors which are orthogonal to each other:

o (LK) L
L=t — =K,
o (PK) (P'L/) /
P =Pl = R - e L
Nt =eBp I Kg. (A.4)

One next constructs the combination of the four-vectors
K and L' which is gauge invariant with respect to the
virtual photon four-momentum ¢ as

ko= g0 - U (A.5)
q-L
which satisfies ¢ - K/ = 0. In terms of these four-vectors,

the Lorentz- and gauge-invariant VCS tensor M*" can
now be written as

MM = % (Bl + BgK) + N;]]QVV (Bs + B4K)

PBNY + PNt
—pnz (35 s + BGW)

P/'U,NV _ P/DN/.L .
—pae (Brie+ BoF)

K/lLP/l/
sepra (ot Buk)

+

K'"NV )
—+ W (Bll 15 + 312%7), (AG)

where B;(i = 1,...,12) are the VCS invariant amplitudes
of Berg and Lindner [17].

The invariant amplitudes F; defined in eq. (11) which
correspond to the tensor basis of eq. (A.2) can be ex-
pressed in terms of the invariant amplitudes B; defined
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in eq. (A.6). These expressions read

2
@ QPP
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Appendix B. Born contributions to invariant
amplitudes

For the invariant amplitudes F;, defined through eq. (11),
one finds the following Born contributions FP, corre-
sponding to a nucleon intermediate state in the s- and
u-channel of the v*p — ~p process

B 1
R el VTP yC Yo V)
{HQQ [mFl(QQH(l + n)FQ(QQ)] —V%F2(Q2>},
B = sr— o [P @)+ S n(@?)]
FP =0,
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1
P = T 2M (s — M?)(u— MZ)”FQ(Qz)’
1
= M2(s — M2)(u— M?)
2
X { _t +4Q [mFl(Qz) +(1+ 2/-@)F2(Q2)]
+V2/<F2(Q2)}7
Fp = !

AM(s — M2)(u — M2)

< |2+ 0R@) + R@) + fprr@)]
FP =0,
FP =0,
Fy = !

~ 2M(s — M?)(u — M?)
| Q) + (@) + i@,

X

FlBé = (S_Mz)(u_Mg)(l+”)(F1(Q2)+F2(Q2))>

12 (s — ]\412)(u — )
<[P (wR@0) + @) e @)],

t+@Q?
8M3(s — M?)(u — M?)

B _
Fll_

B _
F12_

KF(Q%),

(B.1)

where F1(Q?) and F»(Q?) are the Dirac and Pauli nucleon
form factors, respectively.

Appendix C. s-channel helicity amplitudes for
VCS

Appendix C.1. Definitions and conventions

The s-channel helicity amplitudes for virtual Compton
scattering are denoted by T%, Ay A AN and were defined

in eq. (6). In this Appendix, we express the invariant am-
plitudes F; in terms of these s-channel helicity amplitudes.
In addition, we quote the explicit results for the imaginary
parts of the helicity amplitudes in the case of 7N inter-
mediate states.

We work in the c.m. system of the s-channel process
v*N — vN, and all kinematical quantities are understood
in this system. The energies of the incoming (outgoing)
nucleon are denoted by E (E'), respectively. The incoming
photon has energy ¢o and its momentum q is chosen to
point in the z-direction. The outgoing-photon momentum

q’ is chosen to lie in the zz-plane and makes an angle 6
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with the z-axis. We use the Lorentz gauge for the photon
polarization vectors. For the initial (virtual) photon, the
transverse and longitudinal polarization vectors are given
by

1 .
E“(q,A:il) = (07$ﬁa_£70> )

e (A =0) = (%,0707%) :

whereas for the final (real) photon, the polarization vec-
tors are given by:

(C.1)

/ / 1 i 1
eH (q’,)\ ::|:1> = (O,:F% COS@’_E’iE sin9> )
(C.2)
The initial nucleon, characterized by the momentum
p and the polarization Ay, is propagating in the negative
z-direction. The final nucleon, with momentum p, and
polarization A, makes an angle 180° — @ with respect to
the virtual photon, and has the azimuthal angle 180° +
®~+~. This leads to the following spinor conventions for
the incoming and outgoing nucleons:

X\n
u(p, \n) =VE+M ,

22N B2 X

Xl)\ﬁv
u(p’, Xy) = VE + M . . (C3)
2/\INE’I;-M X//\'N
where
K -1
X1 = ) ) X-1 = 0 )
sing cosg
Xi = ; X_1 = (C.4)
: _fcosg sin%

Appendix C.2. VCS reduced helicity amplitudes

The reduced helicity amplitudes 7; are defined by factor-
izing out from the helicity amplitudes T}, Ny M the kine-

matical factors in (cos g)‘AJrAl and (sin%)lAiA , with
A=X— Ay and A" = X — X). The relations between the
12 independent VCS helicity amplitudes and the reduced

helicity amplitudes 7; (i = 1,..,12) read:

’
|

0

S S 3
1.1 =cos=Ty, 1°,1. 1 =cos’ =T
13515 Lo Ffo1g-13 2%
T% .., =cos® =sin QT S, = cos - sin? QT
=313 2727 Tlaitly 27" 2"
0

TS = sin® =7,
17%;71% 2 6>
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0
2 s 2 .
T° . ,1=cos—sin“—77, T° , _,=cos” —=sin—r
-1iad 7 -1-1;-11 9 2 85
T =sin-19, T%, . =Cos =T
1%70% 95 _1_570% 2 10,
T4 Olfsmgcos 711, T} 141 =cos < sin® ~712.(C.5)
—i3s 2 2 —32V3

Appendix C.3. Relations between the invariant
amplitudes of Berg and Lindner and the VCS reduced
helicity amplitudes

The imaginary parts of the invariant amplitudes F;, which
enter the dispersion integrals of eq. (13), are constructed
from the VCS reduced helicity amplitudes 7;, which were
defined in (C.5). To avoid too lengthy formulas, we display
here the relations between the amplitudes B; and the 7;.
The relations between the F; and the 7; are then obtained
from those relations, and by using eq. (A.7), which ex-
presses the F; in terms of the B;.

For convenience we define the following abbreviations
for kinematical factors:

lq] g
Cr =1 Co=1-—
1 +E+M7 2 E+M7
- M - M
ooy VM lal o WE=M o
Vs+ M E+ M Vs+M E+ M
/ /
cy—_lal_, ld] o _lal __ld'l

E+M E+M ° T E+M E+M

With these definitions, the relations between the am-
plitudes B; of Berg and Lindner and the reduced helicity
amplitudes 7; are given by

ep . VETETM)
4v/slql
— gocosf
x(v5 - o) AL =00

0 0
X {Cg 71 + cos? 3 Ty — sin? 3 (’7’4 + 7'7)

2\/§Q Sin2€ Tg — 29
B 9 COS 27’11

_|q| — gocosf

.90 50
— T5 — SIn iTﬁJrcos 5(7’3+Tg)

2\/§Q 2 9 ) 6
+m CcOos 5 <7’10 — sin 5 T12 s (C.6)
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—62322
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0 0
T+ cos? 3 Ty — sin® 3 (7'4 + 7'7)
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22Q ,29< , 0 )1
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0 0
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2 2
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0 0
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e“ By =
! 8slalla’]
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+Cy | 75 + sin §T6+COS E(TngTg) , (C.9)
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s|q|?|q’]*sin® @
(t+Q%)?

Lo 0
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2p _ V(E+M)(E'+ M)
—® By = .
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_laf—gocosd 0059< (C.16)
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NoTeERE: } (C.17)

Equations (C.6)—(C.17) together with the equations in
(A.7) eventually allow to express the F; in terms of the
VCS helicity amplitudes.

+ Cs

0 )
7'10+SIH 57’12

Appendix C.4. Unitarity relations between the VCS
reduced helicity amplitudes and pion photo- and
electro-production multipoles

If we write down the unitarity equations for the VCS
helicity amplitudes and consider only w/N intermediate
states, then the imaginary parts of the VCS helicity ampli-
tudes can be expressed in terms of the v*N — 7N times
¥N — wN multipoles
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where 7; are the reduced helicity amplitudes defined in
eq. (C.5). In eq. (C.18), ¢, is the pion c.m. momentum in
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the intermediate state, and F' is a hypergeometric poly-
nomial defined as

a(a+1)b(b+ 1) 22
_— .. (C.19
(:1!+ c(e+1) 2!+ ( )
In eq. (C.18), the transverse multipoles A;1, Bjy, and the
longitudinal multipoles L;1 are defined as in ref. [40].
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