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Abstract. We present in detail a dispersion relation formalism for virtual Compton scattering (VCS) off
the proton from threshold into the ∆(1232)-resonance region. Such a formalism can be used as a tool to
extract the generalized polarizabilities of the proton from both unpolarized and polarized VCS observables
over a larger energy range. We present calculations for existing and forthcoming VCS experiments and
demonstrate that the VCS observables in the energy region between pion production threshold and the
∆(1232)-resonance show an enhanced sensitivity to the generalized polarizabilities.

PACS. 11.55.Fv Dispersion relations – 13.40.-f Electromagnetic processes and properties – 13.60.Fz Elastic
and Compton scattering – 14.20.Dh Protons and neutrons

1 Introduction

The field of virtual Compton scattering (VCS) has been
opened up experimentally in recent years by the new high-
precision electron accelerator facilities. On the theoretical
side, an important activity has emerged over the last years
around the VCS process in different kinematical regimes
(see, e.g., [1,2] for reviews).

In VCS off a nucleon target, a virtual photon interacts
with the nucleon and a real photon is emitted in the pro-
cess. At low energy of the outgoing real photon, the VCS
reaction amounts to a generalization of real Compton scat-
tering (RCS) in which both energy and momentum of the
virtual photon can be varied independently, which allows
us to extract response functions, parametrized by the so-
called generalized polarizabilities (GPs) of the nucleon [3].
On the other side, VCS has also a close relation to elastic
electron scattering. More precisely this means, that the
physics addressed with VCS is the same as if one would
perform an elastic electron scattering experiment on a tar-
get placed between the plates of a capacitor or between
the poles of a magnet. In this way one studies the spatial
distributions of the polarization densities of the target, by
means of the GPs, which are functions of the square of
the four-momentum Q2 transferred by the electron. The
GPs teach us about the interplay between nucleon-core
excitations and pion-cloud effects, and their measurement
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provides therefore a new test of our understanding of the
nucleon structure.

A first dedicated VCS experiment was performed at
the MAMI accelerator, and two combinations of the pro-
ton GPs have been measured [4]. Further experimental
programs are under way at the intermediate energy elec-
tron accelerators (JLab [5], MIT-Bates [6], MAMI [7]) to
measure the VCS observables.

At present, VCS experiments at low outgoing-photon
energies are analyzed in terms of low-energy expansions
(LEXs). In the LEX, only the leading term (in the energy
of the real photon) of the response to the quasi-constant
electromagnetic field, due to the internal structure of the
system, is taken into account. This leading term depends
linearly on the GPs. As the sensitivity of the VCS cross-
sections to the GPs grows with the photon energy, it is
advantageous to go to higher photon energies, provided
one can keep the theoretical uncertainties under control
when approaching and crossing the pion threshold. The
situation can be compared to RCS, for which one uses a
dispersion relation formalism [8,9] to extract the polariz-
abilities at energies above pion threshold, with generally
larger effects on the observables.

It is the aim of the present paper to present in detail
such a dispersion relation (DR) formalism for VCS on a
proton target, which can be used as a tool to extract the
GPs from VCS observables over a larger energy range, into
the ∆(1232)-resonance region. In ref. [10], we have given
a first account of the DR predictions for the GPs. In this
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paper we present the formalism in detail and show the
results for the VCS observables.

In sect. 2, we start by specifying the kinematics and
the invariant amplitudes of the VCS process.

In sect. 3, we set up the DR formalism for the VCS
invariant amplitudes and show that, for 10 of the 12 VCS
invariant amplitudes unsubtracted, DRs hold.

In sect. 4, it is shown that the DR formalism provides
predictions for 4 of the 6 GPs of the proton.

In sect. 5, it is discussed how the s-channel disper-
sion integrals, which correspond to the excitation of πN ,
ππN ,... intermediate states, are calculated. In the numer-
ical evaluation of the dispersion integrals, only the contri-
bution of πN states is taken into account.

In sect. 6, we show how to deal with the two VCS
invariant amplitudes for which one cannot write down an
unsubtracted DR. Our DR formalism involves two free
parameters, being directly related to two GPs, and which
are to be extracted from a fit to the experiment.

In sect. 7, we show the results in the DR formalism
for both unpolarized and polarized VCS observables be-
low and above pion threshold. We compare with existing
data and present predictions for planned and forthcoming
experiments.

Finally, we present our conclusions in sect. 8.
Several technical details on VCS invariant amplitudes

and helicity amplitudes are collected in three Appendices.

2 Kinematics and invariant amplitudes for
VCS

In this section, we start by briefly recalling how the VCS
process on the proton is accessed through the ep → epγ
reaction. In this process, the final photon can be emit-
ted either by the proton, which is referred to as the fully
virtual Compton scattering (FVCS) process, or by the lep-
ton, which is referred to as the Bethe-Heitler (BH) process.
This is shown graphically in fig. 1, leading to the ampli-
tude T ee′γ of the ep → epγ reaction as the coherent sum
of the BH and the FVCS process:

T ee′γ = TBH + TFVCS. (1)

The BH amplitude TBH is exactly calculable from QED if
one knows the nucleon electromagnetic form factors. The
FVCS amplitude TFVCS contains, in the one-photon ex-
change approximation, the VCS subprocess γ∗p → γp.
We refer to ref. [1] where the explicit expression of the
BH amplitude is given, and where the construction of the
FVCS amplitude from the γ∗p → γp process is discussed.
In this paper, we present the details of how to construct
the amplitude for the γ∗p → γp VCS subprocess, in a DR
formalism.

We characterize the four-vectors of the virtual (real)
photon in the VCS process γ∗p → γp by q (q′) respec-
tively, and the four-momenta of initial (final) nucleons by
p (p′), respectively. In the VCS process, the initial pho-
ton is spacelike and we denote its virtuality in the usual
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Fig. 1. (a) FVCS process, (b) BH process.

way by q2 = −Q2. Besides Q2, the VCS process can be
described by the Mandelstam invariants

s = (q + p)2, t = (q − q′)2, u = (q − p′)2, (2)

with the constraint

s + t + u = 2M2 − Q2, (3)

where M denotes the nucleon mass. We furthermore in-
troduce the variable ν, which changes sign under s ↔ u
crossing

ν =
s − u

4M
, (4)

and which can be expressed in terms of the virtual photon
energy in the lab frame (Elab

γ ) as

ν = Elab
γ +

1
4M

(
t − Q2

)
. (5)

In the following, we choose Q2, ν and t as the independent
variables to describe the VCS process. In fig. 2, we show
the Mandelstam plane for the VCS process at a fixed value
of Q2 = 0.33 GeV2, at which the experiment of [4] was
performed.

The VCS helicity amplitudes can be written as

Tλ′λ′
N ;λλN

=−e2εµ(q, λ)ε
′∗
ν (q′, λ′)ū(p′, λ′

N )Mµνu(p, λN ),
(6)

with e the proton electric charge (e2/4π = 1/137.036).
The polarization four-vectors of the virtual (real) pho-
tons are denoted by ε (ε

′
), and their helicities by λ (λ′),

with λ = 0,±1 and λ′ = ±1. The nucleon helicities are
λN , λ′

N = ±1/2, and u, ū are the nucleon spinors (as spec-
ified in Appendix C). The VCS tensor Mµν in eq. (6)
can be decomposed into a Born (B) and a non-Born part
(NB):

Mµν = Mµν
B + Mµν

NB. (7)

In the Born process, the virtual photon is absorbed on
a nucleon and the intermediate state remains a nucleon,
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Fig. 2. The Mandelstam plane for virtual Compton scattering
at Q2 = 0.33 GeV2. The boundaries of the physical s-channel
region are Θ = 0◦ and Θ = 180◦ for ν > 0, the u-channel
region is obtained by crossing, ν → −ν. The curves for Θ = 0◦

and Θ = 180◦ intersect at ν = 0, t = −Q2, which is the point
where the generalized polarizabilities are defined.

whereas the non-Born process contains all nucleon ex-
citations and meson-loop contributions. The separation
between Born and non-Born parts is performed in the
same way as described in ref. [3], to which we refer for
details. One can proceed by parametrizing the VCS ten-
sor of eq. (7) in terms of 12 independent amplitudes. In
ref. [11], a tensor basis was found so that the resulting
non-Born invariant amplitudes are free of kinematical sin-
gularities and constraints, which is an important property
when setting up a dispersion relation formalism. In detail,
we denote the tensor Mµν as [11]

Mµν =
12∑

i=1

fi(Q2, ν, t) ρµν
i , (8)

where the 12 independent tensors ρµν
i are given in Ap-

pendix A. The 12 independent invariant amplitudes fi are
expressed in terms of the invariants Q2, ν and t, but are
otherwise identical with the amplitudes used in [11].

The tensor basis ρµν
i of eq. (A.2) was chosen in [11]

such that the resulting invariant amplitudes fi are either
even or odd under crossing. Photon crossing leads to the
symmetry relations among the fi at the real photon point

fi (0, ν, t) = + fi (0,−ν, t) , (i = 1, 2, 6, 11),

fi (0, ν, t) = − fi (0,−ν, t) , (i = 4, 7, 9, 10), (9)

while the amplitudes f3, f5, f8, f12 do not contribute at
the real photon point, because the corresponding tensors
in eq. (A.2) vanish in the limit Q2 → 0.

Nucleon crossing combined with charge conjugation
provides the following constraints on the fi at arbitrary
virtuality Q2:

fi

(
Q2, ν, t

)
=+fi

(
Q2,−ν, t

)
, (i = 1, 2, 5, 6, 7, 9, 11, 12),

fi

(
Q2, ν, t

)
=−fi

(
Q2,−ν, t

)
, (i = 3, 4, 8, 10). (10)

When using dispersion relations, it will be convenient to
work with 12 amplitudes that are all even in ν. Therefore,
we define new amplitudes Fi (i = 1,...,12) as follows:

Fi

(
Q2, ν, t

)
= fi

(
Q2, ν, t

)
, (i = 1, 2, 5, 6, 7, 9, 11, 12),

Fi

(
Q2, ν, t

)
=

1
ν

fi

(
Q2, ν, t

)
, (i = 3, 4, 8, 10), (11)

satisfying Fi

(
Q2,−ν, t

)
= Fi

(
Q2, ν, t

)
for i = 1,...,12. As

the non-Born invariant amplitudes fNB
3,4,8,10 ∼ ν for ν → 0,

the definition of eq. (11) ensures that also all the non-Born
FNB

i (i = 1,...,12) are free from kinematical singularities.
The results for the Born amplitudes FB

i are listed in Ap-
pendix B.

From eqs. (9) and (10), one furthermore sees that F7

and F9 vanish at the real photon point. Since 4 of the
tensors vanish in the limit Q2 → 0, only the six ampli-
tudes F1, F2, F4, F6, F10 and F11 enter in real Compton
scattering (RCS).

Dispersion relation formalisms for RCS were worked
out in refs. [8,9] in terms of another set of invariant
amplitudes, also free from kinematical singularities and
constraints and denoted as Ai(ν, t) (i = 1,...,6) (see Ap-
pendix A of ref. [8] for definitions). It is therefore useful to
relate the amplitudes F1,2,4,6,10,11(0, ν, t) to the RCS am-
plitudes Ai (ν, t) (i = 1, ..., 6). We find after some algebra
the following relations at Q2 = 0:

−e2 F1 = −A1 −
(

t − 4M2

4M2

)
A3 +

ν2

M2
A4 + A6,

−e2 F2 = − 1
2M2

[
A3 + A6 − t

4M2
A4

]
,

−e2 F4 =
1

2M2
A4,

−e2 F6 =
1

4M2

[
−
(

t − 4M2

4M2

)
A4 + A6

]
,

−e2 F10 = − 1
2M

[A5 − A6] ,

−e2 F11 = − 1
4M

[
A2 − t − 4M2 + 4ν2

4M2
A4 + A6

]
, (12)

where the charge factor −e2 appears explicitely on the
l.h.s. of eq. (12), because this factor is included in the
usual definition of the Ai. The values of the RCS invariant
amplitudes Ai (i = 1,...,6) at ν = t = 0 can be expressed
in terms of the scalar polarizabilities α, β, and the spin
polarizabilities γ1, γ2, γ3, γ4, as specified in ref. [8].
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3 Dispersion relations at fixed t and fixed Q2

for VCS

With the choice of the tensor basis of eq. (A.2), and taking
account of the crossing relation eq. (10), the resulting non-
Born VCS invariant amplitudes Fi (i = 1,...,12) are free
of all kinematical singularities and constraints and are all
even in ν, i.e. Fi(Q2, ν, t) = Fi(Q2,−ν, t).

Assuming further analyticity and an appropriate high-
energy behavior, the amplitudes Fi(Q2, ν, t) fulfill unsub-
tracted dispersion relations with respect to the variable ν
at fixed t and fixed virtuality Q2

ReFNB
i (Q2, ν, t) =

2
π

P
∫ +∞

νthr

dν′ ν′ ImsFi(Q2, ν′, t)
ν′2 − ν2

,

(13)
where we indicated explicitely that the l.h.s. of eq. (13)
represents the non-Born (NB) parts of the amplitudes.
Furthermore, in eq. (13), ImsFi are the discontinuities
across the s-channel cuts of the VCS process, starting at
the pion production threshold, which is the first inelastic
channel, i.e. νthr = mπ + (m2

π + t/2 + Q2/2)/(2M), with
mπ the pion mass.

Besides the absorptive singularities due to physical in-
termediate states which contribute to the r.h.s. of disper-
sion integrals as eq. (13), one might wonder if other sin-
gularities exist giving rise to imaginary parts. Such addi-
tional singularities could come from so-called anomalous
thresholds [12,13], which arise when a hadron is a loosely
bound system of other hadronic constituents which can go
on-shell (such as is the case of a nucleus in terms of its
nucleon constituents), leading to so-called triangular sin-
gularities. It was shown that in the case of strong confine-
ment within QCD, the quark-gluon structure of hadrons
does not give rise to additional anomalous thresholds [14,
15], and the quark singularities are turned into hadron
singularities described through an effective field theory.
Therefore, the only anomalous thresholds arise for those
hadrons which are loosely bound composite systems of
other hadrons (such as, e.g., the Σ particle in terms of Λ
and π). For the nucleon case, such anomalous thresholds
are absent, and the imaginary parts entering the disper-
sion integrals as in eq. (13) are calculated from absorptive
singularities (due to πN , ππN , ... physical intermediate
states).

The assumption that unsubtracted dispersion relations
as in eq. (13) hold, requires that at high energies (ν → ∞
at fixed t and fixed Q2) the amplitudes ImsFi(Q2, ν, t) (i =
1, ..., 12) drop fast enough so that the integrals of eq. (13)
are convergent and the contribution from the semi-circle
at infinity can be neglected.

For the RCS invariant amplitudes A1,...,A6 which ap-
pear on the r.h.s. of eq. (12), the Regge theory leads to
the following high-energy behavior for ν → ∞ and fixed t:

A1, A2 ∼ ναM(t), (14)

(A3 + A6) ∼ ναP(t)−2, (15)

A3, A5 ∼ ναM(t)−2 (16)

A4 ∼ ναM(t)−3, (17)

where αM(t) � 0.5 (for t ≤ 0) is a meson Regge trajec-
tory, and where αP(t) is the Pomeron trajectory which
has an intercept αP(0) ≈ 1.08. Note that the Pomeron
dominates the high-energy behavior of the combination of
A3 + A6. From the asymptotic behavior of eqs. (14)–(17),
it follows that for RCS unsubtracted dispersion relations
do not exist for the amplitudes A1 and A2. The reason for
the divergence of the unsubtracted integrals is essentially
given by fixed poles in the t-channel, notably the exchange
of the neutral pion (for A2) and of a somewhat fictitious
σ-meson (for A1) with a mass of about 600 MeV and a
large width, which models the two-pion continuum with
the quantum numbers I = J = 0.

We consider next the VCS amplitudes F1, ..., F12, in
the Regge limit (ν → ∞ at fixed t and fixed Q2) to deter-
mine for which of the amplitudes unsubtracted dispersion
relations as in eq. (13) exist. The high-energy behavior of
the amplitudes Fi is deduced from the high-energy behav-
ior of the VCS helicity amplitudes that are defined and
calculated in Appendix C. This leads, after some algebra,
to the following behavior in the Regge limit (ν → ∞, at
fixed t and fixed Q2) 1:

F1, F5 ∼ ναP(t)−2, ναM(t) , (18)

F5 + 4F11 ∼ ναP(t)−2, ναM(t)−1, (19)

F2, F6, F10 ∼ ναP(t)−2, ναM(t)−2 , (20)

F7 ∼ ναP(t)−3, ναM(t)−1 , (21)

F3, F8 ∼ ναP(t)−3, ναM(t)−2 , (22)

F9, F12 ∼ ναP(t)−4, ναM(t)−2 , (23)

F4 ∼ ναP(t)−4, ναM(t)−3 . (24)

In eqs. (18)–(24), we have indicated the high-energy be-
havior from the Pomeron (αP) and from the meson (αM)
contributions separately. It then follows that for the two
amplitudes F1 and F5, an unsubtracted dispersion inte-
gral as in eq. (13) does not exist, whereas the other ten
amplitudes on the l.h.s. of eqs. (19)–(24) can be evaluated
through unsubtracted dispersion integrals as in eq. (13).

Having specified the VCS invariant amplitudes and
their high-energy behavior, we are now ready to set up
the DR formalism. First, we will show in sect. 4 that 4
of the 6 GPs of the nucleon can be evaluated using un-
subtracted DR. We will then discuss in sect. 5 how the
s-channel dispersion integrals of eq. (13) are evaluated. In
particular, unitarity will allow us to express the imaginary
parts of the VCS amplitudes in terms of πN , ππN ,... in-
termediate states. Finally, we will show in sect. 6 how to
deal with the remaining two VCS invariant amplitudes for
which one cannot write unsubtracted DRs.

1 We note that some of the Fi in eqs. (18)–(24) decrease
faster with increasing ν than reported in ref. [10]. This is be-
cause a more detailed calculation has shown a cancellation in
the highest power of ν for some of the Fi, which leads to the
behavior of eqs. (18)–(24). However, this does not change the
conclusion obtained in ref. [10] that unsubtracted DR only exist
for 10 of the 12 Fi. The asymptotic behavior of eqs. (18)–(24)
only shows that for some of those 10 amplitudes, the dispersion
integrals converge even faster than anticipated earlier [10].
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4 Dispersion relations for the generalized
polarizabilities

The behavior of the non-Born VCS tensor Mµν
NB of

eq. (8) at low energy (q′ ≡ |q ′ | → 0) but at arbi-
trary three-momentum q ≡ |q | of the virtual photon,
can be parametrized by six generalized polarizabilities
(GPs), which are functions of q and which are denoted
by P (ρ′ L′,ρ L)S(q) [3,16,11]. In this notation, ρ (ρ′) refers
to the electric (2), magnetic (1) or longitudinal (0) nature
of the initial (final) photon, L (L′ = 1) represents the an-
gular momentum of the initial (final) photon, and S dif-
ferentiates between the spin-flip (S = 1) and non-spin-flip
(S = 0) character of the transition at the nucleon side. A
convenient choice for the 6 GPs has been proposed in [1]:

P (01,01)0(q), P (11,11)0(q), (25)

P (01,01)1(q), P (11,11)1(q), P (11,02)1(q), P (01,12)1(q). (26)

In the limit q → 0 for the GPs, one finds the following
relations with the polarizabilities (in Gaussian units) of
RCS [11]:

P (01,01)0(0) = −4π

e2

√
2
3

α,

P (11,11)0(0) = −4π

e2

√
8
3

β,

P (01,12)1(0) = −4π

e2

√
2

3
γ3,

P (11,02)1(0) = −4π

e2

2
√

2
3
√

3
(γ2 + γ4) ,

P (01,01)1(0) = 0,

P (11,11)1(0) = 0. (27)

In terms of invariants, the limit q′ → 0 at finite three-
momentum q of the virtual photon corresponds to ν → 0
and t → −Q2 at finite Q2. One can therefore express the
GPs in terms of the VCS invariant amplitudes Fi at the
point ν = 0, t = −Q2 for finite Q2, for which we introduce
the shorthand

F̄i(Q2) ≡ FNB
i

(
Q2, ν = 0, t = −Q2

)
. (28)

The relations between the GPs and the F̄i(Q2) can be
found in [11].

The present work aims at evaluating the GPs through
unsubtracted DRs of the type of eq. (13). We have seen
from the high-energy behavior that the unsubtracted DRs
do not exist for the amplitudes F1 and F5, but can be
written down for the other amplitudes. Therefore, unsub-
tracted DRs for the GPs will hold for those GPs which do
not depend on the two amplitudes F1 and F5. However, the
amplitude F5 can appear in the form F5 + 4F11, because
this combination has a high-energy behavior (eq. (20))
leading to a convergent integral. Among the six GPs we

find four combinations which do not depend on F1 and F5:

P (01,01)0 +
1
2
P (11,11)0 =

−2√
3

(
E + M

E

)1/2

M q̃0

×
{

q2

q̃2
0

F̄2 +
(
2 F̄6 + F̄9

)− F̄12

}
, (29)

P (01,01)1 =
1

3
√

2

(
E + M

E

)1/2

q̃0

× {(
F̄5 + F̄7 + 4 F̄11

)
+ 4M F̄12

}
, (30)

P (01,12)1 − 1√
2 q̃0

P (11,11)1 =
1
3

(
E + M

E

)1/2
M q̃0

q2

× {(
F̄5 + F̄7 + 4 F̄11

)
+ 4M

(
2 F̄6 + F̄9

)}
, (31)

P (01,12)1 +
√

3
2

P (11,02)1 =
1
6

(
E + M

E

)1/2
q̃0

q2

× {
q̃0

(
F̄5 + F̄7 + 4F̄11

)
+ 8M2

(
2F̄6 + F̄9

)}
, (32)

where E =
√

q2 + M2 denotes the initial proton c.m. en-
ergy and q̃0 = M − E the virtual photon c.m. energy in
the limit q′ = 0. For small values of q, we observe the rela-
tion q̃0 ≈ − q2/(2M). Furthermore, in the limit q′ = 0, the
value of Q2 is always understood as being Q̃2 ≡ q2 − q̃2

0 ,
which we denote by Q2 for simplicity of the notation.

The four combinations of GPs on the l.h.s. of eqs. (29)–
(32) can then be evaluated in a framework of unsubtracted
DRs through the following integrals for the corresponding
F̄i(Q2):

F̄i(Q2) =
2
π

∫ +∞

νthr

dν′ ImsFi(Q2, ν′, t = −Q2)
ν′ . (33)

5 s-channel dispersion integrals

The imaginary parts of the amplitudes Fi in eq. (13) are
obtained through the imaginary part of the VCS helicity
amplitudes defined in eq. (6). The latter are determined
by using unitarity. Denoting the VCS helicity amplitudes
by Tfi, the unitarity relation takes the generic form

2 Ims Tfi =
∑
X

(2π)4δ4(PX − Pi)T
†
XfTXi , (34)

where the sum runs over all possible intermediate states
X. In this work, we are mainly interested in VCS through
the ∆(1232)-resonance region. Therefore, we restrict our-
selves to the dominant contribution by only taking ac-
count of the πN intermediate states. The influence of ad-
ditional channels, like the ππN intermediate states which
are indispensable when extending the dispersion formal-
ism to higher energies, will be investigated in a future
work.

The VCS helicity amplitudes can be expressed by the
Fi in a straightforward manner, even though the calcula-
tion is cumbersome. The main difficulty, however, is the
inversion of the relation between the two sets of ampli-
tudes, i.e., to express the twelve amplitudes Fi in terms of
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the twelve independent helicity amplitudes. To solve this
problem we proceeded in two different ways. First, the in-
version was performed numerically by applying different
algorithms. Second, we succeeded in obtaining an ana-
lytical inversion using a two-step procedure. To this end
we used an additional set of amplitudes, called Bi, which
were introduced by Berg and Lindner [17] and which are
defined in Appendix A.2. Both the relations between the
Bi and the Fi on the one hand, and between the helic-
ity amplitudes and the Bi on the other hand can be in-
verted analytically. The expressions of the Fi amplitudes
in terms of the Bi amplitudes are given in Appendix A.2,
and the expressions of the Bi amplitudes in terms of the
VCS helicity amplitudes are given in Appendix C.3 (for
the definition of the VCS helicity amplitudes, see Appen-
dices C.1 and C.2). In our calculations, we checked that
the two methods to express the Fi amplitudes in terms of
the VCS helicity amplitudes lead numerically to the same
results.

The imaginary parts of the s-channel VCS helicity
amplitudes are calculated through unitarity taking into
account the contribution from πN intermediate states.
They are expressed in terms of pion photo- and electro-
production multipoles as specified in Appendix C.4. For
the calculation of the pion photo- and electro-production
multipoles, we use the phenomenological MAID analy-
sis [18], which contains both resonant and non-resonant
pion production mechanisms.

6 Asymptotic parts and dispersive
contributions beyond πN

To evaluate the VCS amplitudes F1 and F5 in an un-
subtracted DR framework, we proceed as in the case of
RCS [8]. This amounts to perform the unsubtracted dis-
persion integrals (13) for F1 and F5 along the real ν-axis
only in the range −νmax ≤ ν ≤ +νmax, and to close the
contour by a semi-circle with radius νmax in the upper half
of the complex ν-plane, with the result

ReFNB
i (Q2, ν, t) = F int

i (Q2, ν, t) + F as
i (Q2, ν, t), (35)

for (i = 1, 5), where the integral contributions F int
i (for

i = 1, 5) are given by

F int
i (Q2, ν, t)=

2
π
P
∫ νmax

νthr

dν′ ν
′ImsFi(Q2, ν′, t)

ν′2−ν2
, (36)

and with the contributions of the semi-circle of radius νmax

identified with the asymptotic contributions (F as
1 , F as

5 ).
Evidently, the separation between asymptotic and in-

tegral contributions in eq. (35) is specified by the value
of νmax. The total result for FNB

i is formally independent
of the specific value of νmax. In practice, however, νmax is
chosen to be not too large so that one can evaluate the
dispersive integrals of eq. (36) from threshold up to νmax

sufficiently accurate. On the other hand, νmax should also
be large enough so that one can approximate the asymp-
totic contribution F as

i by some energy-independent (i.e.

ν-independent) function. In the calculations, we there-
fore choose some intermediate value νmax ≈ 1.5 GeV,
and parametrize the asymptotic contributions F as

i by t-
channel poles, which will be discussed next for the cases
of F as

5 and F as
1 .

6.1 The asymptotic contribution Fas
5

The asymptotic contribution to the amplitude F5 predom-
inantly results from the t-channel π0-exchange

F as
5 (Q2, ν, t) ≈ Fπ0

5 (Q2, t) = −4Fπ0

11 (Q2, t)

=
1
M

gπNN Fπ0γγ

(
Q2

)
t − m2

π

. (37)

As mentioned before, the π0-pole only contributes to the
amplitudes F5 and F11, but drops out in the combina-
tion (F5 + 4F11), which therefore has a different high-
energy behavior as expressed in eq. (19). In eq. (37), the
πNN coupling gπNN is taken from ref. [19]: g2

πNN/(4π)
= 13.73. Furthermore, in (37), Fπ0γγ

(
Q2

)
represents the

π0γ∗γ form factor. Its value at Q2 = 0 is fixed by the
axial anomaly: Fπ0γγ (0) = 1/(4π2 fπ) = 0.274 GeV−1,
where fπ = 0.0924 GeV is the pion decay constant. For
the Q2-dependence of Fπ0γγ

(
Q2

)
, we use the interpola-

tion formula proposed by Brodsky-Lepage [20]

Fπ0γγ

(
Q2

)
=

1/(4π2 fπ)
1 + Q2/(8π2 f2

π)
, (38)

which provides a rather good parametrization of the
π0γ∗γ form factor data over the whole Q2 range, and
which leads to the asymptotic prediction at large Q2:
Fπ0γγ

(
Q2 	) → 2 fπ/Q2.

When fixing the asymptotic contribution F as
5 through

its π0-pole contribution as in eq. (37), one can determine
one more GP of the nucleon, in addition to the four com-
binations of eqs. (29)–(32). In particular, the GP P (11,11)1

can be expressed by

P (11,11)1
(
Q2

)
= −

√
2

3

(
E + M

E

)1/2
M q̃2

0

q2

×{
F̄5(Q2) + q̃0 F̄12(Q2)

}
. (39)

In fig. 3, we show the results of the dispersive contribu-
tion to the four spin GPs, and compare them to the re-
sults of the O(p3) heavy-baryon chiral perturbation theory
(HBChPT) [21,22], the linear σ-model [23], and the non-
relativistic constituent quark model [24]. It is obvious that
the DR calculations show more structure in Q2 than the
different model calculations.

The O(p3) HBChPT results predict for the GPs
P (01,01)1 and P (11,11)1 a rather strong increase with Q2,
which would have to be checked by a O(p4) calculation.

The constituent quark model calculation gives negligi-
bly small contributions for the GPs P (01,01)1 and P (11,02)1,
whereas the GPs P (11,11)1 and P (01,12)1 receive their dom-
inant contribution from the excitation of the ∆(1232)
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Fig. 3. Results for the spin-flip GPs excluding the π0-pole
contribution in different model calculations, as functions of the
squared momentum transfer. The full curves correspond to the
dispersive πN contribution. The dashed curves show the results
of O(p3) HBChPT [22], the dash-dotted curves correspond
to the predictions of the linear σ-model [23], and the dotted
curves are the results of the non-relativistic constituent quark
model [24]. Note that the constituent quark model (CQM) re-
sults for P (01,01)1 and P (11,02)1 are multiplied (for visibility)
by a factor 100.

(M1 → M1 transition) and N∗ and ∆∗-resonances (E1 →
M2 transition), respectively.

The linear σ-model, which takes account of part of
the higher-order terms of a consistent chiral expansion,
in general results in smaller values for the GPs than the
corresponding calculations to leading order in HBChPT.

The comparison in fig. 3 clearly indicates that a satis-
fying theoretical description of the GPs over a larger range
in Q2 is a challenging task.

In fig. 4, we show the dispersive and π0-pole con-
tributions to the 4 spin GPs as well as their sum. For
the presentation, we multiply in fig. 4 the GPs P (01,12)1

and P (11,02)1 with Q, in order to better compare the
Q2-dependence when including the π0-pole contribution,
which itself drops very fast with Q2. The π0-pole does not
contribute to the GP P (01,01)1, but is seen to dominate
the other three spin GPs. It is however possible to find,
besides the GP P (01,01)1, the two combinations given by
eqs. (31), (32) of the remaining three spin GPs, for which
the π0-pole contribution drops out [10].
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Fig. 4. Results for the spin-flip GPs as functions of the squared
momentum transfer. The dashed curves correspond to the dis-
persive πN contribution, the dotted curves show the π0-pole
contribution, and the full curves are the sum of the dispersive
and π0-pole contributions. For comparison, we also show the
π0-pole contribution when setting the π0γ∗γ form factor equal
to 1 (dash-dotted curves). Note that P (01,01)1 has no π0-pole
contribution.

6.2 The asymptotic part and dispersive contributions
beyond πN to F1

We next turn to the high-energy contribution to F1. As
we are mainly interested in a description of VCS up to
∆(1232)-resonance energies, we saturate the dispersion in-
tegrals by their πN contribution. Furthermore, we will es-
timate the remainder by an energy-independent function,
which parametrizes the asymptotic contribution (i.e. the
contour with radius νmax in the complex ν-plane), and all
dispersive contributions beyond the πN -channel up to the
value νmax = 1.5 GeV.

Before turning to the case of VCS, we briefly outline
the parametrization of the asymptotic part of F1 in the
case of RCS, and how one expresses it in terms of a polar-
izability, which is then extracted from a fit to experiment.

The asymptotic contribution to the amplitude F1 orig-
inates predominantly from the t-channel ππ intermediate
states, and will be calculated explicitly in two model cal-
culations. In the phenomenological analysis, this contin-
uum is parametrized through the exchange of a scalar-
isoscalar particle in the t-channel, i.e. an effective “σ”-
meson, as suggested in ref. [8]. For RCS, this leads to the
parametrization of the difference of FNB

1 and its πN con-
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tribution, as an energy-independent function

FNB
1 (0, ν, t) − FπN

1 (0, ν, t) ≈[
FNB

1 (0, 0, 0) − FπN
1 (0, 0, 0)

] 1
1 − t/m2

σ

, (40)

where FπN
1 on the l.h.s and r.h.s are evaluated through a

dispersive integral as discussed in sect. 5. In eq. (40), the
effective “σ”-meson mass mσ is a free parameter in the
RCS dispersion analysis, which is obtained from a fit to
the t-dependence of RCS data, and turns out to be around
mσ ≈ 0.6 GeV [8]. The value FNB

1 (0, 0, 0) is then consid-
ered as a remaining gobal fit parameter to be extracted
from experiment. It can be expressed physically in terms
of the magnetic polarizability β

FNB
1 (0, 0, 0) =

4π

e2
β. (41)

In RCS, one usually takes (α−β) as fit parameter instead
of β because the sum (α + β) at the real photon point
can be determined independently, and rather accurately,
through Baldin’s sum rule, which leads for the proton to
the phenomenological value [25]

α + β = ( 13.69 ± 0.14 ) × 10−4 fm3. (42)

Using a dispersive formalism as outlined above, the most
recent global fit to RCS data for the proton yields the fol-
lowing values for the electric and magnetic polarizabilities
of the proton [26]:

α = 12.1 ± 0.3 (stat.) ∓ 0.4 (syst.) ± 0.3 (model), (43)
β = 1.6 ± 0.4 (stat.) ± 0.4 (syst.) ± 0.4 (model), (44)

where α and β are expressed here and in the following in
units 10−4 fm3.

From eqs. (43), (44), one then obtains for the difference
(α − β), the following global average [26]:

α − β = 10.5 ± 0.9 (stat. + syst.) ± 0.7 (model) . (45)

The term FπN
1 (0, 0, 0) in eq. (40), when calculated through

a dispersion integral, has the value

FπN
1 (0, 0, 0) =

4π

e2
βπN =

4π

e2

(
9.1 × 10−4 fm3

)
. (46)

From the πN contribution βπN of eq. (46), and the phe-
nomenological value β of eq. (44), one obtains the differ-
ence

(β − βπN ) = −7.5 , (47)

which enters in the r.h.s. of eq. (40). By comparing the
value of eq. (47) with the total value for β (eq.(44)), one
sees that the small experimental value of the magnetic
polarizability comes about by a near cancellation between
a large (positive) paramagnetic contribution (βπN ) and a
large (negative) diamagnetic contribution (β − βπN ), i.e.
the asymptotic part of F1 parametrizes the diamagnetism.

Turning next to the VCS process, we proceed analo-
gously by parametrizing the non-Born term FNB

1 (Q2, ν, t)

beyond its πN dispersive contribution, by an energy-
independent t-channel pole of the form

FNB
1 (Q2, ν, t) − FπN

1 (Q2, ν, t) ≈ f(Q2)
1 − t/m2

σ

, (48)

where the parameter mσ is taken as for RCS:
mσ ≈ 0.6 GeV. The function f(Q2) in eq. (48) can be ob-
tained by evaluating the l.h.s of eq. (48) at the point where
the GPs are defined, i.e. ν = 0 and t = −Q2, at finite Q2.
This leads to

f(Q2) =
[
F̄1(Q2) − F̄πN

1 (Q2)
] (

1 + Q2/m2
σ

)
, (49)

where we introduced the shorthand F̄1(Q2) as defined in
eq. (28). F̄1(Q2) can be expressed in terms of the gen-
eralized magnetic polarizability P (11,11)0(Q2) of eq. (25)
as [11]

F̄1(Q2) = −
√

3
8

(
2E

E + M

)1/2

P (11,11)0(Q2) (50)

≡ 4π

e2

(
2E

E + M

)1/2

β(Q2) , (51)

where β(Q2) is the generalized magnetic polarizability,
which reduces at Q2 = 0 to the polarizability β of RCS.

Equations (48), (49) then lead to the following expres-
sion for the VCS amplitude FNB

1 :

FNB
1 (Q2, ν, t) ≈ FπN

1 (Q2, ν, t)

+
[
F̄1(Q2) − F̄πN

1 (Q2)
] 1 + Q2/m2

σ

1 − t/m2
σ

, (52)

where the πN contributions FπN
1 (Q2, ν, t) and F̄πN

1 (Q2)
(or equivalently βπN (Q2)) are calculated through a dis-
persion integral as outlined above. Consequently, the only
unknown quantity on the r.h.s. of eq. (52) is F̄1(Q2),
which can be directly used as a fit parameter at finite Q2.
This amounts to fit the generalized magnetic polarizability
β(Q2) from VCS observables.

The parametrization of eq. (52) for F1 permits to ex-
tract β(Q2) from VCS observables at some finite Q2 and
over a larger range of energies with as few model depen-
dence as possible. In the following, we consider a con-
venient parametrization of the Q2-dependence of β(Q2)
in order to provide predictions for VCS observables. For
this purpose we use a dipole form for the difference of
β(Q2)−βπN (Q2), which enters in the r.h.s. of eq. (52) via
eq. (51). This leads to the form

β(Q2) − βπN (Q2) =

(
β − βπN

)
(
1 + Q2/Λ2

β

)2 , (53)

where the RCS value (β − βπN ) on the r.h.s. is given by
eq. (47). The mass scale Λβ in eq. (53) determines the Q2-
dependence, and hence gives us the information of how the
diamagnetism is spatially distributed in the nucleon. Us-
ing the dipole parametrization of eq. (53), one can extract
Λβ from a fit to VCS data at different Q2 values.
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To have some educated guess on the physical value of
Λβ , we next discuss two microscopic calculations of the
diamagnetic contribution to the GP β(Q2). The diamag-
netism of the nucleon is dominated by the pion cloud sur-
rounding the nucleon. Therefore, we calculate the diamag-
netic contribution through a dispersion relation estimate
of the t-channel ππ intermediate state contribution to F1.
Such a dispersive estimate has been performed before in
the case of RCS [27,9], where it was shown that the asymp-
totic part of F1 can be related to the γγ → ππ → NN̄
process. The dominant contribution is due to the ππ in-
termediate state with spin and isospin zero (I = J = 0).
The generalization to VCS leads then to the identification
of F as

1 with the following unsubtracted DR in t at fixed
energy ν = 0:

F̄ as
1 (Q2) =

1
π

∫ ∞

4m2
π

dt′
ImtF1(Q2, 0, t′)

t′ + Q2
. (54)

The evaluation of the imaginary part on the r.h.s. of
eq. (54), originating mainly from the ππ intermediate
state contribution, requires information on the subpro-
cesses γ∗γ → ππ and ππ → NN̄ . For the latter we use
the extrapolation of ref. [28] for the πN -scattering am-
plitude to the unphysical region of positive t. For the
γ∗γ → ππ amplitude, we use the unitarized Born ampli-
tude, following ref. [9]. At the pion electromagnetic ver-
tex, the pion electromagnetic form factor is included. At
Q2 = 0, it was found [9] that the unitarization procedure
enhances the γγ → ππ cross-section in the threshold re-
gion, compared to the Born result, which is required to
get agreement with the data. This becomes obvious from
the DR of eq. (54), where the imaginary part of F1 is
weighted by 1/t, so that the threshold contribution domi-
nates the dispersion integral. The dispersive evaluation of
eq. (54) contains no free parameters as it uses as input
the γγ → ππ and ππ → NN̄ processes, and therefore pro-
vides a more microscopic model for the phenomenological
“σ”-exchange. For RCS, the dispersion integral of eq. (54)
yields the value βas ≈ −7.3 × 10−4 fm3. However, the un-
subtracted dispersion integral can only be evaluated up
to −t = 0.778 GeV2, because the ππ → NN̄ amplitudes
of ref. [28] were only determined up to this value, and
the dispersion integral of eq. (54) may not have fully con-
verged at this value. Therefore, one should consider the
near perfect agreement between the value of βas from this
calculation with the phenomenological value of (47) as a
coincidence. However, our estimate indicates that the dis-
persive estimate through ππ t-channel intermediate states
provides the dominant physical contribution to the dia-
magnetism, and that it can be used to give a first guess
of the distribution of diamagnetism in the nucleon. With
this model we show the Q2-dependence of F̄ as

1 in fig. 5.
To have a second microscopic calculation for compari-

son, we also show in fig. 5 an evaluation of F̄ as
1 (Q2) in the

linear σ-model (LSM) of ref. [23]. The LSM calculation
overestimates the value of F̄ as

1 (0) (or equivalently βas) by
about 30% at any realistic value of mσ (which is a free pa-
rameter in this calculation). However, as for the dispersive
calculation, it also shows a steep Q2-dependence.

DR : γ* γ → π π →  N N
–

LSM : mσ= 0.5 GeV

LSM : mσ= 0.7 GeV

Q
2
 ( GeV

2
 )

F
1 as

 (
Q

2
,0

,-
Q

2
) 

  (
 G

eV
-3
 )

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fig. 5. Theoretical estimates of the asymptotic contribution
F as

1 : DR calculation [9] of the γ∗γ → ππ → NN̄ process as
described in the text in sect. 6.2 (full curve); linear σ-model
(LSM) calculation [23] with mσ = 0.5 GeV (dotted curve) and
mσ = 0.7 GeV (dash-dotted curve). The dashed curves are
dipole parametrizations according to eq. (53), which are fixed
to the phenomenological value at Q2 = 0 and are shown for two
values of the mass scale, Λβ = 0.4 GeV (upper dashed curve,
nearly coinciding with the full curve) and Λβ = 0.6 GeV (lower
dashed curve).

Furthermore, we compare in fig. 5 the two model cal-
culations discussed above with the dipole parametrization
for β(Q2)− βπN (Q2) of eq. (53) for the two values: Λβ =
0.4 GeV and Λβ = 0.6 GeV. It is seen that these values
are compatible with the microscopic estimates discussed
before. In particular, the result for Λβ = 0.4 GeV is nearly
equivalent to the dispersive estimate of ππ-exchange in the
t-channel. The value of the mass scale Λβ is small com-
pared to the typical scale of ΛD ≈ 0.84 GeV appearing
in the nucleon magnetic (dipole) form factor. This reflects
the fact that diamagnetism has its physical origin in the
pionic degrees of freedom, i.e. is situated in the surface
and intermediate region of the nucleon.

6.3 Dispersive contributions beyond πN to F2

Though we can write down unsubtracted DRs for all in-
variant amplitudes (or combinations of invariant ampli-
tudes) except for F1 and F5, one might wonder about the
quality of our approximation to saturate the unsubtracted
dispersion integrals by πN intermediate states only. We
shall show that this question is particularly relevant for
the amplitude F2, for which we next investigate the size
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of dispersive contributions beyond the πN -channel. We
start with the case of RCS, where one can quantify the
higher-dispersive corrections to F2, because the value of
FNB

2 at the real photon point can be expressed exactly
(see eqs. (27), (29)) in terms of the scalar polarizability
sum (α + β) as

FNB
2 (0, 0, 0) = −4π

e2

1
(2M)2

(α + β) . (55)

The πN dispersive contribution to (α + β) provides the
value

(α + β)πN = 11.6 , (56)

which falls short by about 15% compared to the sum
rule value of eq. (42). The remaining part originates
from higher-dispersive contributions (ππN , ...) to F2.
These higher-dispersive contributions could be calculated
through unitarity, by use of eq. (34), similarly to the πN
contribution. However, the present data for the produc-
tion of those intermediate states (e.g., γ∗N → ππN) are
still too scarce to evaluate the imaginary parts of the VCS
amplitude F2 directly. Therefore, we estimate the disper-
sive contributions beyond πN by an energy-independent
constant, which is fixed to its phenomenological value at
ν = t = 0. This yields

FNB
2 (0, ν, t) ≈ FπN

2 (0, ν, t)

− 4π

e2

1
(2M)2

[
(α + β) − (α + β)πN

]
, (57)

which is an exact relation at ν = t = 0, the point where
the polarizabilities are defined.

The approximation of eq. (57) to replace the dispersive
contributions beyond πN by a constant can only be valid
if one stays below the thresholds for those higher con-
tributions. Since the next threshold beyond πN is ππN ,
the approximation of eq. (57) restricts us in practice to
energies below the ∆(1232)-resonance. If one wanted to
extend the DR formalism to energies above two-pion pro-
duction threshold, one could proceed in an analogous way
by replacing eq. (57) as follows:

FNB
2 (0, ν, t) ≈ FπN

2 (0, ν, t) + FππN
2 (0, ν, t)

− 4π

e2

1
(2M)2

[
(α + β) − (α + β)πN

− (α + β)ππN
]

, (58)

i.e. the energy dependence associated with πN and ππN
dispersive contributions would have to be calculated ex-
plicitly and the remainder be parametrized by an energy-
independent constant fixed to the phenomenological value
of (α+β). Equation (58), and eq. (40) for FNB

1 modified in
an analogous way to include the ππN dispersive contribu-
tions, would then allow an extension of the DR formalism
to energies into the second resonance region. Such an ex-
tension remains to be investigated in a future work, but
because of the present lack of experimental input for the
ππN -channel, we restrict ourselves in the present work to
energies up to the ∆(1232)-resonance region.

We next consider the extension to VCS, and focus
our efforts to describe VCS into the ∆(1232)-resonance
region. Analogously to eq. (57) for RCS, the dispersive
contributions beyond πN are approximated by an energy-
independent constant. This constant is fixed at arbitrary
Q2, ν = 0, and t = −Q2, which is the point where the
GPs are defined. One thus obtains for FNB

2

FNB
2 (Q2, ν, t)≈FπN

2 (Q2, ν, t)+
[
F̄2(Q2)−F̄πN

2 (Q2)
]
, (59)

where F̄2(Q2) is defined as in eq. (28), and can be ex-
pressed in terms of GPs. In this paper, we saturate the
three combinations of spin GPs of eqs. (30)–(32) by their
πN contribution, and calculate the fourth spin GP of
eq. (39) through its πN contributions plus the π0-pole
contribution as shown in fig. 4. Therefore, we only con-
sider dispersive contributions beyond the πN intermedi-
ate states for the two scalar GPs, which are then two fit
quantities that enter our DR formalism for VCS. In this
way, and by using eq. (29), one can write the difference
F̄2(Q2) − F̄πN

2 (Q2) entering in the r.h.s. of eq. (59) as
follows:

F̄2(Q2) − F̄πN
2 (Q2) ≈ 4π

e2

(
2E

E + M

)1/2
q̃0

q2

1
2M

×{ [
α(Q2) − απN (Q2)

]
+
[
β(Q2) − βπN (Q2)

] }
, (60)

where β(Q2) is the generalized magnetic polarizability of
eq. (51). Furthermore, α(Q2) is the generalized electric
polarizability which reduces at Q2 = 0 to the electric
polarizability α of RCS, and which is related to the GP
P (01,01)0(Q2) of eq. (25) by

P (01,01)0(Q2) ≡ −4π

e2

√
2
3

α(Q2). (61)

We stress that eqs. (52) and (59) are intended to ex-
tract the two GPs α(Q2) and β(Q2) from VCS observ-
ables minimizing the model dependence as much as pos-
sible. As in the previous case for β(Q2), we next con-
sider a convenient parametrization of the Q2-dependence
of α(Q2) in order to provide predictions for VCS observ-
ables. Again we propose a dipole form for the difference
α(Q2) − απN (Q2) which enters in the r.h.s. of eq. (60),

α(Q2) − απN (Q2) =

(
α − απN

)
(1 + Q2/Λ2

α)2
, (62)

where the Q2-dependence is governed by the mass scale
Λα, again a free parameter. In eq. (62), the RCS value

(α − απN ) = 9.6 , (63)

is obtained from the phenomenological value of eq. (43)
for α, and from the calculated πN contribution: απN =
2.5. Using the dipole parametrization of (62), one can then
extract the free parameter Λα from a fit to VCS data at
different Q2 values.
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7 Results for ep → epγ observables and
discussion

Having set up the dispersion formalism for VCS, we now
show the predictions for the different ep → epγ observ-
ables for energies up to the ∆(1232)-resonance region.
The aim of the experiments is to extract the 6 GPs of
eqs. (25), (26) from both unpolarized and polarized ob-
servables. We will compare the DR results, which take
account of the full dependence of the ep → epγ observ-
ables on the energy (q′) of the emitted photon, with a
low-energy expansion (LEX) in q′. In the LEX of observ-
ables, only the first three terms of a Taylor expansion in
q′ are taken into account.

In such an expansion in q′, the experimentally ex-
tracted VCS unpolarized squared amplitude Mexp takes
the form [3]

Mexp =
Mexp

−2

q′2
+

Mexp
−1

q′
+ Mexp

0 + O(q′) . (64)

Due to the low-energy theorem (LET), the threshold coef-
ficients Mexp

−2 and Mexp
−1 are known (see ref. [3] for details).

The information on the GPs is contained in Mexp
0 , which

contains a part originating from the (BH + Born) am-
plitude and another one which is a linear combination of
the GPs, with coefficients determined by the kinematics.
It was found in ref. [3] that the unpolarized observable
Mexp

0 can be expressed in terms of 3 structure functions
PLL(q), PTT (q), and PLT (q) by

Mexp
0 −MBH+Born

0 = 2K2

{
v1 [εPLL(q) − PTT (q)]

+
(

v2 − q̃0

q
v3

)√
2ε (1 + ε)PLT (q)

}
, (65)

where K2 is a kinematical factor, ε is the virtual pho-
ton polarization (in the standard notation used in elec-
tron scattering), and v1, v2, v3 are kinematical quantities
depending on ε and q as well as on the c.m. polar and
azimuthal angles (Θ and φ, respectively) of the produced
real photon (for details see ref. [1]).

After some algebra, one finds that the 3 unpolarized
observables of eq. (65) can be expressed in terms of the 6
GPs as [3,1]

PLL = −2
√

6MGEP (01,01)0, (66)

PTT = −3GM
q2

q̃0

(
P (11,11)1 −

√
2q̃0P

(01,12)1
)

, (67)

PLT =

√
3
2

Mq

Q
GEP (11,11)0 +

3
2

Qq

q̃0
GMP (01,01)1, (68)

where GE and GM stand for the electric and magnetic
nucleon form factors GE(Q2) and GM(Q2), respectively.

In fig. 6, we show the calculations of PLL − PTT /ε
and PLT , which have been measured at MAMI at Q2 =
0.33 GeV2 [4]. The virtual photon polarization ε is fixed

to the experimental value (ε = 0.62), and for the electro-
magnetic form factors in eqs. (66)–(68) we use the Höhler
parametrization [29] as in the analysis of the MAMI ex-
periment [4].

In the lower panel of fig. 6, the Q2-dependence of the
VCS response function PLT is displayed, which reduces
to the magnetic polarizability β at the real photon point
(Q2 = 0). At finite Q2, it contains both the scalar GP
β(Q2) and the spin GP P (01,01)1, as seen from eq. (68). It
is obvious from fig. 6 that the structure function PLT re-
sults from a large dispersive πN contribution and a large
asymptotic contribution (to β) with opposite sign, lead-
ing to a relatively small net result. At the real photon
point, the small value of β is indeed known to result from
the near cancellation of a large paramagnetic contribution
from the ∆-resonance, and a large diamagnetic contribu-
tion (asymptotic part). The latter is shown in fig. 6 with
the parametrization of eq. (53) for the values Λβ = 0.4
and Λβ = 0.6 GeV, which were also displayed in fig. 5.
Due to the large cancellation in PLT , its Q2-dependence
is a very sensitive observable to study the interplay of the
two mechanisms. In particular, one expects a faster fall-off
of the asymptotic contribution with Q2 in comparison to
the πN dispersive contribution, as discussed before. This
is already highlighted by the measured value of PLT at
Q2 = 0.33 GeV2 [4], which is comparable to the value of
PLT at Q2 = 0 [26]. As seen from fig. 6, this points to an
interesting structure in the Q2 region around 0.1 GeV2,
where forthcoming data are expected from an experiment
at MIT-Bates [6].

In the upper panel of fig. 6, we show the Q2-
dependence of the VCS response function PLL − PTT /ε,
which reduces at the real photon point (Q2 = 0) to the
electric polarizability α. At non-zero Q2, PLL is directly
proportional to the scalar GP α(Q2), as seen from eq. (66),
and the response function PTT of eq. (67) contains only
spin GPs. As is shown by fig. 6, the πN dispersive con-
tribution to α and to the spin GPs are smaller than
the asymptotic contribution to α, which is evaluated for
Λα = 1 GeV. At Q2 = 0, the πN dispersive and asymp-
totic contributions to α have the same sign, in contrast to
β where both contributions have opposite sign and largely
cancel each other in their sum.

The response functions PLT and PLL−PTT /ε were ex-
tracted in [4] by performing a LEX to VCS data, according
to eq. (65). To test the validity of such a LEX, we show in
fig. 7 the DR predictions for the full energy dependence
of the non-Born part of the ep → epγ cross-section in the
kinematics of the MAMI experiment [4]. This energy de-
pendence is compared with the LEX, which predicts a lin-
ear dependence in q′ for the difference between the exper-
imentally measured cross-section and its BH + Born con-
tribution. The result of a best fit to the data in the frame-
work of the LEX is indicated by the horizontal bands in
fig. 7 for the quantity (d5σ−d5σBH+Born)/Φq′, where Φ is
a phase-space factor defined in [3]. The fivefold differential
cross-section d5σ is differential with respect to the electron
lab energy and lab angles and the proton c.m. angles, and
stands in all of the following for dσ /dke

lab dΩe
lab dΩp

c.m.. It
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Fig. 6. Results for the unpolarized structure functions PLL −
PTT /ε (upper panels), and PLT (lower panels), for ε = 0.62.
Upper left panel: dispersive πN contribution of the GP α
(full curve), dispersive πN contribution of the spin-flip GPs
(dashed curve), and the asymptotic contribution of α accord-
ing to eq. (62) with Λα = 1 GeV (dotted curve). Upper right
panel: total result for PLL − PTT /ε (sum of the three contri-
butions on the upper left panel) for Λα = 1 GeV (full curve)
and Λα = 1.4 GeV (dashed curve). Lower left panel: dispersive
πN contribution of the GP β (full curve), contribution of the
spin-flip GPs (dashed curve), and the asymptotic contribution
of β according to eq. (53) with Λβ = 0.6 GeV (dotted curve).
Lower right panel: total result for PLT , for Λβ = 0.7 GeV
(dotted curve), Λβ = 0.6 GeV (full curve), and Λβ = 0.4 GeV
(dashed curve). The RCS data are from ref. [26], and the VCS
data at Q2 = 0.33 GeV2 from ref. [4].

is seen from fig. 7 that the DR results predict only a mod-
est additional energy dependence up to q′ � 0.1 GeV/c
and for most of the photon angles involved, and therefore
seems to support the LEX analysis of [4]. Only for for-
ward angles, Θc.m.

γγ ≈ 0, which is the angular range from
which the value of PLT is extracted, the DR calculation
predicts a stronger energy dependence in the range up to
q′ � 0.1 GeV/c, as compared to the LEX. It will be in-
teresting to perform a best fit of the MAMI data using
the DR formalism, extract the two fit parameters α(Q2)
and β(Q2), and consequently the values of PLL − PTT /ε
and PLT , respectively. Such a best fit using the DR for-
malism is planned in a future investigation. Increasing the
energy, we show in fig. 8 the DR predictions for photon
energies in the ∆(1232)-resonance region. It is seen that
the ep → epγ cross-section rises strongly when crossing
the pion threshold. In the dispersion relation formalism,
which is based on unitarity and analyticity, the rise of the

(d 5 σ -d 5 σ BH+Born )/ Φ q
,
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Fig. 7. (d5σ−d5σBH+Born)/Φq′ for the ep → epγ reaction as a
function of the outgoing-photon energy q′ in MAMI kinemat-
ics: ε = 0.62, q = 0.6 GeV, and for different photon c.m. an-
gles Θ. The data and the shaded bands, representing the best
fit to the data within the LEX formalism, are from ref. [4].
The solid curves are the DR results taking into account the
full q′-dependence of the non-Born contribution to the cross-
section. The asymptotic contributions are calculated according
to eqs. (53), (62), with Λβ = 0.6 GeV and Λα = 1 GeV, re-
spectively.

cross-section with q′ below pion threshold, due to virtual
πN intermediate states, is connected to the strong rise
of the cross-section with q′ when a real πN intermediate
state can be produced. It is furthermore seen from fig. 8
(lower panel) that the region between pion threshold and
the ∆-resonance peak displays an enhanced sensitivity to
the GPs through the interference with the rising Compton
amplitude due to ∆-resonance excitation. For example, at
q′ � 0.2 GeV/c, the predictions for PLT in the lower right
panel of fig. 6 for Λβ = 0.4 GeV and Λβ = 0.6 GeV give
a difference of about 20% in the non-Born squared ampli-
tude. In contrast, the LEX prescription results in a relative
effect for the same two values of PLT of about 10% or less.
This is similar to the situation in RCS, where the region
between pion threshold and the ∆-resonance position also
provides an enhanced sensitivity to the polarizabilities and
is used to extract those polarizabilities from data [8,9] us-
ing a DR formalism. Therefore, the energy region between
pion threshold and the ∆-resonance seems promising to
measure VCS observables with an increased sensitivity to
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Fig. 8. Upper panel: The differential cross-section for the re-
action ep → epγ as a function of the outgoing-photon energy q′

in MAMI kinematics: ε = 0.62, q = 0.6 GeV, and for Θ = 0◦,
in plane (φ = 0◦). The BH + Born contribution is given by
the dash-dotted curve. The total DR results are obtained with
the asymptotic parts of eqs. (53), (62), using a fixed value of
Λα = 1 GeV and for the three values of Λβ as displayed in
the lower right plot of fig. 6, i.e. Λβ = 0.7 GeV (dotted curve),
Λβ = 0.6 GeV (solid curve), and Λβ = 0.4 GeV (dashed curve).
Lower panel: Results for (d5σ − d5σBH+Born)/Φq′ as functions
of q′. The DR calculation taking into account the full energy
dependence of the non-Born contribution (thick curves) are
compared to the corresponding results within the LEX formal-
ism (thin horizontal curves). The curves in the lower panel
correspond to the same values of Λα and Λβ as in the upper
panel. The data are from ref. [4].

the GPs. The presented DR formalism can be used as a
tool to extract the GPs from such data. When increas-
ing the value of ε, the Born and non-Born parts of the
ep → epγ cross-section increase relative to the BH contri-
bution, due to the increasing virtual photon flux factor [1].
This is seen by comparing the non-Born cross-section in
fig. 8 (corresponding to ε = 0.62), with the result for ε =
0.8 at the same value of q and Θc.m.

γγ , as is shown in fig. 9.
Besides giving rise to higher non-Born cross-sections, an
experiment at a higher value of ε (keeping q fixed) also
allows to disentangle the unpolarized structure functions
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Fig. 9. Same as fig. 8 but for ε = 0.8.

PLL(q) and PTT (q) in eq. (65). This will provide a nice
opportunity for the MAMI-C facility where such a higher
ε value (as compared to the value ε = 0.62 of the first VCS
experiment of ref. [4]) will be reachable for the same value
of q. Recently, VCS data have also been taken at JLab [5]
both below pion threshold at Q2 = 1 GeV2 [30,31], and at
Q2 = 1.9 GeV2 [32,31], as well as in the resonance region
around Q2 = 1 GeV2 [33].

The extraction of GPs from VCS data at these higher
values of Q2 requires an accurate knowledge of the nu-
cleon electromagnetic form factors (FFs) in this region.
For the proton magnetic FF Gp

M(Q2), we use the Bosted
parametrization [34], which has an accuracy of around 3%
in the Q2 region of 1–2 GeV2. The ratio of the proton elec-
tric FF Gp

E to the magnetic FF Gp
M was recently measured

with high accuracy in a polarization experiment at JLab
in the Q2 range 0.4–3.5 GeV2 [35]. It was found in [35]
that Gp

E drops considerably faster with Q2 than Gp
M. In

the region of interest here, i.e. Q2 in the 1–2 GeV2 range,
the JLab data of ref. [35] are well described by the fit [30]

µpG
p
E(Q2)

Gp
M(Q2)

≈ 1 − 0.13(Q2)2 + 0.028(Q2)3 , (69)

where µp is the proton magnetic moment. In the fol-
lowing VCS calculations at Q2 = 1 GeV2, we use the
parametrization of eq. (69) to specify Gp

E (with the Bosted
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Fig. 10. Left panels: The differential cross-section for the
reaction ep → epγ as a function of the photon scattering
angle and at different values of the outgoing-photon energy
q′ in JLab kinematics. Right panels: ratio of cross-sections
(dσ − dσBH+Born)/dσBH+Born. Dash-dotted curves on the left
panels: BH + Born contribution. The DR results are dis-
played (on both left and right panels) with the asymptotic
terms parametrized as in eqs. (62), (53), using the values:
Λα = 1 GeV and Λβ = 0.6 GeV (full curves), Λα = 1 GeV
and Λβ = 0.4 GeV (dashed curves), Λα = 1.4 GeV and
Λβ = 0.6 GeV (dotted curves).

parametrization for Gp
M). In fig. 10, we show the DR pre-

dictions for the ep → epγ reaction at Q2 = 1GeV2, for
three values of the outgoing-photon energy, below pion
threshold. In these kinematics, data have been taken at
JLab and, at the time of writing this paper, preliminary
results on VCS cross-sections and GPs have been reported
in ref. [30]. For those kinematics, we show in fig. 10 the
differential cross-sections as well as the non-Born effect
relative to the BH + Born cross-section. It is seen from
fig. 10 that the sensitivity to the GPs is largest where
the BH + Born cross-section becomes small, in particular
in the angular region between 0◦ and 50◦. In fig. 10, we
show the non-Born effect for different values of the polar-
izabilities. For PLL, the calculation for the πN dispersive
contribution at Q2 = 1 GeV2 gives

PπN
LL (1 GeV2) = −0.3 GeV−2 , (70)

leading to the total results for PLL within the DR formal-
ism

PLL(1 GeV2) = +2.3 GeV−2, for (Λα = 1 GeV) , (71)
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Fig. 11. (d5σ − d5σBH+Born)/Φq′ for the ep → epγ reaction
as function of the scattering angle and at different values of
the outgoing-photon energy q′ in JLab kinematics. The solid
curves correspond to the DR calculation with the full energy
dependence of the non-Born contribution to the cross-section.
The dash-dotted curves are the corresponding results obtained
from the LEX. The asymptotic contributions have been cal-
culated with the parametrizations in eqs. (62), (53), using
Λα = 1.4 GeV and Λβ = 0.6 GeV .

PLL(1 GeV2) = +4.2 GeV−2, for (Λα = 1.4 GeV) . (72)

For PLT , the calculation for the πN dispersive contribu-
tion at Q2 = 1 GeV2 gives

PπN
LT (1 GeV2) = − 0.9 GeV−2 , (73)

leading to the total results for PLT within the DR formal-
ism

PLT (1 GeV2)=−0.6 GeV−2, for (Λβ =0.6 GeV) , (74)

PLT (1 GeV2)=−0.9 GeV−2, for (Λβ =0.4 GeV) . (75)

It will be interesting to compare the sensitivity of the
cross-sections to these values of the GPs, as displayed in
fig. 10, to the JLab data which have been taken in this
region [30]. The deviation of the experimental values from
the dispersive πN values of (70) for PLL and of (73) for
PLT will provide us with interesting information, allow-
ing to test our understanding of the electric and magnetic
polarizability at this large virtuality of Q2 = 1 GeV2.
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Fig. 12. Upper panel: The differential cross-sections for the
ep → epγ reaction as functions of the c.m. energy W in JLab
kinematics: ε = 0.95, Q2 = 1 GeV2, and for fixed scatter-
ing angle Θ = −160◦, in plane (φ = 0◦). The BH + Born
contribution is given by the dash-dotted curve. The total re-
sult including the non-Born contribution is shown for Λβ =
0.6 GeV and for the two values: Λα = 1 GeV (full curve),
and Λα = 1.4 GeV (dashed curve). Lower panel: results for
(d5σ − d5σBH+Born)/Φq′ as functions of W. The curves in the
lower panel correspond to the same values of Λα and Λβ as in
the upper panel.

For the same kinematics as in fig. 10, we compare in
fig. 11 the DR calculation for the non-Born cross-section
with the corresponding result using the LEX. It is seen
that the deviation of the DR results from the LEX be-
comes already noticeable for q′ = 75 MeV, over most of the
photon angular range. Therefore, the DR analysis seems
already to be needed at those lower values of q′ to extract
GPs from the JLab data.

In fig. 12, we increase the energy through the ∆(1232)-
resonance region, and show the results for the ep → epγ
reaction at Q2 = 1 GeV2 and at a backward angle. We dis-
play the calculations of the cross-section and of the non-
Born effect for the values in (71) and (72) for PLL, and
for the value in (74) for PLT . One sees a sizeable sensi-
tivity to PLL in this backward angle cross-section, and it
therefore seems very promising to extract information on
the electric polarizability from such anticipated data. Un-
til now, we discussed only unpolarized VCS observables.
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Fig. 13. VCS double-polarization asymmetry (polarized elec-
tron, recoil proton polarization along either the z- or x-
directions in the c.m. frame) in MAMI kinematics as a function
of the photon scattering angle. The dotted curves correspond
to the BH + Born contribution. The dispersion results for the
total BH + Born + non-Born cross-section are shown for the
values of the mass scale Λα = 1 GeV, Λβ = 0.6 GeV (full
curves) and Λα = 1 GeV, Λβ = 0.4 GeV (dashed curves). To
see the effect of the π0-pole contribution, we also show the re-
sults for the values Λα = 1 GeV, Λβ = 0.6 GeV, when turning
off the π0-pole contribution (dash-dotted curves).

An unpolarized VCS experiment gives access to only 3
combinations of the 6 GPs, as given by eqs. (66)–(68). It
was shown in ref. [36] that VCS double-polarization ob-
servables with polarized lepton and polarized target (or
recoil) nucleon, will allow us to measure three more com-
binations of GPs. Therefore a measurement of unpolar-
ized VCS observables (at different values of ε) and of 3
double-polarization observables will give the possibility to
disentangle all 6 GPs. The VCS double-polarization ob-
servables, which are denoted by ∆M(h, i) for an electron
of helicity h, are defined as the difference of the squared
amplitudes for recoil (or target) proton spin orientation
in the direction and opposite to the axis i (i = x, y, z)
(see ref. [36] for details). In a LEX, this polarized squared
amplitude yields

∆Mexp =
∆Mexp

−2

q′2
+

∆Mexp
−1

q′
+ ∆Mexp

0 + O(q′) . (76)

Analogous to the unpolarized squared amplitude (64),
the threshold coefficients ∆Mexp

−2 , ∆Mexp
−1 are known due

to the LET. It was found in refs. [36,1] that the po-
larized squared amplitude ∆Mexp

0 can be expressed in
terms of three new structure functions P z

LT (q), P
′z
LT (q),

and P
′⊥
LT (q). These new structure functions are related to
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the spin GPs according to [36,1]

P z
LT =

3Qq

2 q̃0
GM P (01,01)1 − 3M q

Q
GE P (11,11)1, (77)

P
′z
LT = −3

2
QGM P (01,01)1 +

3M q2

Q q̃0
GE P (11,11)1, (78)

P
′⊥
LT =

3 q Q

2 q̃0
GM

(
P (01,01)1 −

√
3
2

q̃0 P (11,02)1

)
. (79)

While P z
LT and P

′z
LT can be accessed by in-plane kine-

matics (φ = 0◦), the measurement of P
′⊥
LT requires an

out-of-plane experiment. In fig. 13, we show the disper-
sion results for the double-polarization observables, with
polarized electron and by measuring the recoil proton po-
larization either along the virtual photon direction (z-
direction) or parallel to the reaction plane and perpen-
dicular to the virtual photon (x-direction). The double-
polarization asymmetries are quite large (due to a non-
vanishing asymmetry for the BH + Born mechanism), but
our DR calculations show only small relative effects due
to the spin GPs below pion threshold. Although these ob-
servables are tough to measure, a first test experiment is
already planned at MAMI [7].

When measuring double-polarization observables
above pion threshold, one can enhance the sensitivity to
the GPs, as we remarked before for the unpolarized ob-
servables. In fig. 14, we show as an example the double-
polarization asymmetry in MAMI kinematics for polar-
ized beam and recoil proton polarization measured along
the virtual photon direction as a function of the outgoing-
photon energy through the ∆(1232) region. The ∆(1232)-
resonance excitation clearly shows up as a deviation from
the LEX result above about q′ = 100 MeV. As discussed
before, VCS polarization experiments below pion thresh-
old, require the measurement of double-polarization ob-
servables to get non-zero values, because the VCS ampli-
tude is purely real below pion threshold. However, when
crossing the pion threshold, the VCS amplitude acquires
an imaginary part due to the coupling to the πN -channel.
Therefore, single-polarization observables become non-
zero above pion threshold. A particularly relevant observ-
able is the electron single spin asymmetry (SSA), which
is obtained by flipping the electron beam helicity [1]. For
VCS, this observable is mainly due to the interference of
the real BH + Born amplitude with the imaginary part
of the VCS amplitude. In fig. 15, the SSA is shown for
two kinematics in the ∆(1232) region. As the SSA van-
ishes in plane, its measurement requires an out-of-plane
experiment, such as is accessible at MIT-Bates [37]. Our
calculation shows firstly that the SSA is quite sizeable in
the ∆(1232) region. Moreover, it displays only a rather
weak dependence on the GPs, because the SSA is mainly
sensitive to the imaginary part of the VCS amplitude.
Therefore, it provides an excellent cross-check of the dis-
persion formalism for VCS, in particular by comparing
at the same time the pion and photon electro-production
channels through the ∆ region.

θ = -50o φ = 0o    p fin pol. along Z CM
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Fig. 14. Upper panel: VCS double-polarization asymmetry
(polarized electron, recoil proton polarization along the z-
direction in the c.m. frame) in MAMI kinematics (same value
of q and ε as in fig. 13) as a function of the outgoing-photon
energy at a fixed photon scattering angle Θ = −50◦, in plane
(φ = 0◦). The middle panel is the corresponding difference of
polarized cross-sections and the lower panel is the non-Born
contribution to the corresponding polarized squared matrix el-
ement (according to eq. (76)). The dotted curves correspond
to the BH + Born contribution. The dispersion results for the
total BH + Born + non-Born cross-section (full curves) are
calculated using the values Λα = 1 GeV and Λβ = 0.6 GeV.
The dashed curves are the corresponding results obtained from
the LEX. To see the effect of the π0-pole contribution, we also
show the results of the dispersion calculation, when turning off
the π0-pole contribution (dash-dotted curves).

8 Conclusions

In this work, we have presented a dispersion relation (DR)
formalism for VCS off a proton target. Such a formalism
can serve as a tool to extract generalized polarizabilities
(GPs) from VCS observables over a larger energy range.
The way we evaluated our dispersive integrals using πN
intermediate states, allows to apply the present formal-
ism for VCS observables through the ∆(1232)-resonance
region.

The presented DR framework, when applied at a fixed
value of Q2, involves two free parameters which can be
expressed in terms of the electric and magnetic GPs, and
which are to be extracted from a fit to VCS data. We
proposed a parametrization of these two free parameters
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Fig. 15. Electron single spin asymmetry (SSA) for VCS at
Q2 = 0.12 GeV2, for two kinematics in the ∆(1232) region:
W = 1.232 GeV, ε = 0.75 (upper plots) and W = 1.17 GeV,
ε = 0.81 (lower plots). In both cases the SSA is shown as a
function of the photon scattering angle for out-of-plane angle
φ = 45◦, as accessible at MIT-Bates [37]. The full dispersion
results are shown for the values: Λα = 1 GeV, Λβ = 0.6 GeV
(full curves), Λα = 1 GeV, Λβ = 0.4 GeV (dashed curves), and
Λα = 1.4 GeV, Λβ = 0.6 GeV (dotted curves).

(asymptotic terms to α and β) in terms of a dipole Q2-
dependence, and investigated the sensitivity of VCS ob-
servables to the corresponding dipole mass scales.

We confronted our dispersive calculations with exist-
ing VCS data taken at MAMI below pion threshold. Com-
pared to the low-energy expansion (LEX) analysis which
was previously applied to those data, we found only a
modest additional energy dependence up to photon ener-
gies of around 100 MeV, which supports such a LEX anal-
ysis. When increasing the photon energy, our dispersive
calculations show that the region between pion threshold
and the ∆-resonance peak displays an enhanced sensitivity
to the GPs. It seems therefore very promising to measure
VCS observables in this energy region in order to extract
GPs with an enhanced precision.

Furthermore, we showed our DR predictions for VCS
data at higher values of Q2, in the range Q2 = 1–2 GeV2,
where VCS data have been taken at JLab which are
presently under analysis. It was found for the JLab kine-
matics that the DR results show already a noticeable de-

viation from the LEX result even for outgoing-photon en-
ergies as low as 75 MeV. Therefore, the DR analysis seems
already to be needed below pion threshold to extract GPs
from the JLab data. We also showed predictions at Q2

= 1 GeV2 at higher outgoing-photon energies, through
the ∆(1232)-resonance region, where data have also been
taken at JLab. At backward scattering angles, we found a
very sizeable sensitivity to the generalized electric polariz-
ability. The two different JLab data sets, both below pion
threshold and in the ∆ region, at the same value of Q2 (in
the range Q2 = 1–2 GeV2) will provide a very interesting
check on the presented DR formalism to demonstrate that
a consistent value of the GPs can be extracted by a fit in
both energy regions.

Besides unpolarized VCS experiments, which give ac-
cess to a combination of 3 (out of 6) GPs, we investigated
the potential of double-polarization VCS observables. Al-
though such double-polarization experiments with polar-
ized beam and recoil proton polarization are quite chal-
lenging, they are needed to access and quantify the re-
maining three GPs. Using the DR formalism one can also
analyze these observables above pion threshold.

Finally, above pion threshold also single-polarization
observables are non-zero. In particular, the electron sin-
gle spin asymmetry, using a polarized electron beam, is
sizeable in the ∆ region and can provide a very valuable
cross-check of the VCS dispersion calculations, as it is
mainly sensitive to the imaginary part of the VCS ampli-
tude, which is linked through unitarity to the πN -channel.
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Friedrich, S. Jaminion, S. Kamalov, G. Laveissiere, A. L’vov, H.
Merkel, L. Tiator, R. Van de Vyver, and L. Van Hoorebeke for
useful discussions. This work was supported by the ECT*, by
the Deutsche Forschungsgemeinschaft (SFB 443), and by the
European Commission IHP program under contract HPRN-
CT-2000-00130.

Appendix A. Gauge-invariant tensor basis for
VCS

Appendix A.1. VCS tensor basis ρµν
i

In writing down a gauge-invariant tensor basis for VCS, it
will be useful to introduce the following symmetric combi-
nations of the four-momenta (in the notations of sect. 2):

P =
1
2

(p + p′) , K =
1
2

(q + q′) . (A.1)

The 12 independent tensors ρµν
i entering the VCS am-

plitude of eq. (8), that were introduced in [11](based on
the work of [38]), are given by

ρµν
1 = −q ·q′gµν + q′µqν ,

ρµν
2 = −(2Mν)2gµν − 4q ·q′PµP ν

+4Mν
(
Pµqν + P νq′µ

)
,
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ρµν
3 = −2MνQ2gµν − 2Mν qµqν

+2Q2P νq′µ + 2q ·q′ P νqµ,

ρµν
4 = 8PµP νK/ − 4Mν

(
Pµγν + P νγµ

)
+i 4Mν γ5 εµναβKαγβ ,

ρµν
5 = P νqµK/ − Q2

2

(
Pµγν − P νγµ

)
− Mν qµγν

− i

2
Q2 γ5 εµναβKαγβ ,

ρµν
6 = −8q ·q′PµP ν + 4Mν

(
Pµqν + P νq′µ

)
+4Mq ·q′

(
Pµγν + P νγµ

)
−4M2ν

(
q′µγν + qνγµ

)
+i 4Mν

(
q′µσναKα − qνσµαKα + q ·q′σµν

)
+i 4Mq ·q′ γ5 εµναβKαγβ ,

ρµν
7 =

(
Pµqν − P νq′µ

)
K/ − q ·q′

(
Pµγν − P νγµ

)
+Mν

(
q′µγν − qνγµ

)
,

ρµν
8 = Mν qµqν +

Q2

2

(
Pµqν − P νq′µ

)
− q ·q′ P νqµ

−MqµqνK/ + Mq ·q′ qµγν

+
M

2
Q2

(
q′µγν − qνγµ

)
− i

2
Q2

(
q′µσναKα − qνσµαKα + q ·q′σµν

)
,

ρµν
9 = 2Mν

(
Pµqν − P νq′µ

)
−2Mq ·q′

(
Pµγν − P νγµ

)
+2M2ν

(
q′µγν − qνγµ

)
+i 2q ·q′

(
PµσναKα + P νσµαKα

)
−i 2Mν

(
q′µσναKα + qνσµαKα

)
,

ρµν
10 = −4Mν gµν + 2

(
Pµqν + P νq′µ

)
+ 4M gµνK/

−2M
(
q′µγν + qνγµ

)
−2 i

(
q′µσναKα − qνσµαKα + q ·q′σµν

)
,

ρµν
11 = 4

(
Pµqν + P νq′µ

)
K/ − 4Mν

(
q′µγν + qνγµ

)
+i 4q ·q′ γ5 εµναβKαγβ ,

ρµν
12 = 2Q2PµP ν + 2Mν P νqµ − 2MQ2Pµγν

−2M2ν qµγν + i 2Mν qµσναKα

+iQ2
(
PµσναKα + P νσµαKα − Mν σµν

)
−iMQ2 γ5 εµναβKαγβ , (A.2)

where we follow the conventions of Bjorken and Drell [39],
i.e. σµν = i/2 [γµ, γν ] and in particular ε0123 = +1.

Appendix A.2. VCS invariant amplitudes Bi of Berg
and Lindner

For further reference, it also turns out to be useful to
work with an alternative tensor basis for VCS, introduced
by Berg and Lindner [17].

One starts by defining, besides the four-vectors P and
K of eq. (A.1), the combination

L =
1
2
(q′ − q), (A.3)

and constructs from K,P , and L, the following four-
vectors which are orthogonal to each other:

L′µ ≡ Lµ − (L · K)
K2

Kµ ,

P ′µ ≡ Pµ − (P · K)
K2

Kµ − (P · L′)
L′2 L′µ ,

Nµ ≡ εµναβP ′
νL′

αKβ . (A.4)

One next constructs the combination of the four-vectors
K and L′ which is gauge invariant with respect to the
virtual photon four-momentum q as

K ′µ ≡ Kµ − q · K
q · L′ L

′µ, (A.5)

which satisfies q ·K ′ = 0. In terms of these four-vectors,
the Lorentz- and gauge-invariant VCS tensor Mµν can
now be written as

Mµν =
P ′µP ′ν

P ′ 2
(
B1 + B2K/

)
+

NµNν

N2

(
B3 + B4K/

)

+
P ′µNν + P ′νNµ

P ′ 2N2

(
B5 iγ5 + B6N/

)

+
P ′µNν − P ′νNµ

P ′ 2N2

(
B7 iγ5 + B8N/

)

+
K ′µP ′ν

K2P ′ 2
(
B9 + B10K/

)

+
K ′µNν

K2N2

(
B11 iγ5 + B12N/

)
, (A.6)

where Bi(i = 1, ..., 12) are the VCS invariant amplitudes
of Berg and Lindner [17].

The invariant amplitudes Fi defined in eq. (11) which
correspond to the tensor basis of eq. (A.2) can be ex-
pressed in terms of the invariant amplitudes Bi defined
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in eq. (A.6). These expressions read

F1 =
2

(t + Q2)3P ′ 2

×
{

2M2ν2(t − Q2)
[
B1 − B3 + ν(B2 − B4)

]

+ (t + Q2)2P ′ 2
[
B3 + νB4

]
− M

P ′ 2 ν2t(t − Q2)B6

+ 8MνQ2

[
B9 + νB10 − t

4M
B12

]}
,

F2 =
1

2(t + Q2)P ′ 2

×
{[

B1 − B3 + ν(B2 − B4)
]
− t

2MP ′ 2 B6

}
,

F3 =
1

(t + Q2)2P ′ 2

{
− 2M

[
B1 − B3 + ν(B2 − B4)

]

+
t

P ′ 2 B6 +
4
ν

[
B9 + νB10 − t

4M
B12

]}
,

F4 =
1

8νP ′ 2
[
B2 − B4

]
− Mt

(t + Q2)2P ′ 4 B6,

F5 =
2

(t + Q2)P ′ 2

{
Mν

[
1 − 2ν2(t − Q2)

(t + Q2)2

][
B2 − B4

]

− ν

M
P ′ 2B4 − 4M

(t + Q2)P ′ 2

[
1 +

4ν2Q2

(t + Q2)2

]
B5

−
[
1 − 4M2 − t

2P ′ 2

(
1 − 2ν2(t − Q2)

(t + Q2)2

)]
B6

+
4

M(t + Q2)
B7 − B8

− 2
[
1 +

4ν2Q2

(t + Q2)2

]
B10 +

32νQ2

(t + Q2)3
B11

+
8ν(t − Q2)
M(t + Q2)2

[
M2 +

tQ2

4(t − Q2)

]
B12

}
,

F6 =
1

(t + Q2)3P ′ 2

{
− ν

4
(t2 + tQ2 + 2Q4)

[
B2 − B4

]

+
Q2(t + Q2)2P ′ 2

8M2ν
B4 +

4Q2

P ′ 2 B5

−
(
M2 − t

4

) t2 + tQ2 + 2Q4

2MP ′ 2 B6 +
Q4

M
B10

− 4Q2

Mν
B11 +

Q4

M2ν

(
M2 − t

4

)
B12

}
,

F7 =
1

(t + Q2)2P ′ 2

{
2MνQ2

[
B2 − B4

]
− 8M

P ′ 2 B5

+
Q2

P ′ 2
(
(4M2 − t) − 2P ′ 2

)
B6

+ 2tB8 − 4Q2B10 +
16MνtQ2

(t + Q2)2
B12

}
,

F8 =
2

(t + Q2)2P ′ 2

{
− 2Mν

[
B2 − B4

]

+
16M

(t + Q2)P ′ 2 B5 − 1
P ′ 2 (4M2 − t)B6

+ 4B10 − 16
ν(t + Q2)

B11 +
4M2 − t

Mν
B12

}
,

F9 =
1

(t + Q2)3P ′ 2

{
− ν

2
Q2(t − Q2)

[
B2 − B4

]

− Q2

4M2ν
(t + Q2)2P ′ 2B4 +

4
P ′ 2 (t − Q2)B5

− Q2

MP ′ 2
(
M2 − t

4

)
(t − Q2)B6

− 2Q4

M
B10 +

8Q2

Mν
B11 − 2Q4

M2ν

(
M2 − t

4

)
B12

}
,

F10 =
1

4Mν
B4,

F11 =
1

(t + Q2)2P ′ 2

{
Mν

2

[
t +

2ν2(t − Q2)
t + Q2

][
B2 − B4

]

+
ν

2M
(t + Q2)P ′ 2B4 +

8Mν2Q2

(t + Q2)2P ′ 2 B5

+
1

P ′ 2

[(
M2 − t

4

)(
t +

2ν2(t − Q2)
t + Q2

)
− tP ′ 2

2

]
B6

− 2
M

B7 +
Q2

2
B8 + Q2

[
1 +

4ν2

t + Q2

]
B10

− 16νQ2

(t + Q2)2
B11 +

4MνQ2

t + Q2

[
Q2

t + Q2
− t

4M2

]
B12

}
,

F12 =
1

(t + Q2)2P ′ 2

{
− ν

2
(t − Q2)

[
B2 − B4

]

− 1
4M2ν

(t + Q2)2P ′ 2B4 − 4
P ′ 2 B5

− 1
MP ′ 2

(
M2 − t

4

)
(t − Q2)B6 − 2Q2

M
B10

+
8

Mν
B11 − 2Q2

M2ν

(
M2 − t

4

)
B12

}
. (A.7)

Appendix B. Born contributions to invariant
amplitudes

For the invariant amplitudes Fi, defined through eq. (11),
one finds the following Born contributions FB

i , corre-
sponding to a nucleon intermediate state in the s- and
u-channel of the γ∗p → γp process

FB
1 =

1
M(s − M2)(u − M2)

×
{

t+Q2

2

[
κF1(Q2)+(1 + κ)F2(Q2)

]
−ν2κF2(Q2)

}
,

FB
2 = − 1

M(s − M2)(u − M2)

[
F1(Q2)+

t+Q2

8M2
κF2(Q2)

]
,

FB
3 = 0,
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FB
4 = − 1

2M(s − M2)(u − M2)
κF2(Q2),

FB
5 =

1
M2(s − M2)(u − M2)

×
{
− t + Q2

4

[
κF1(Q2) + (1 + 2κ)F2(Q2)

]

+ν2κF2(Q2)
}

,

FB
6 =

1
4M(s − M2)(u − M2)

×
[
(2 + κ)F1(Q2) + F2(Q2) +

t

4M2
κF2(Q2)

]
,

FB
7 = 0,

FB
8 = 0,

FB
9 =

1
2M(s − M2)(u − M2)

×
[
− κF1(Q2) + F2(Q2) +

Q2

4M2
κF2(Q2)

]
,

FB
10 =

1
(s − M2)(u − M2)

(1 + κ)
(
F1(Q2) + F2(Q2)

)
,

FB
11 =

1
4M2(s − M2)(u − M2)

×
[
t + Q2

4

(
κF1(Q2) + F2(Q2)

)
− ν2κF2(Q2)

]
,

FB
12 =

t + Q2

8M3(s − M2)(u − M2)
κF2(Q2), (B.1)

where F1(Q2) and F2(Q2) are the Dirac and Pauli nucleon
form factors, respectively.

Appendix C. s-channel helicity amplitudes for
VCS

Appendix C.1. Definitions and conventions

The s-channel helicity amplitudes for virtual Compton
scattering are denoted by T s

λ′ λ′
N , λ λN

, and were defined
in eq. (6). In this Appendix, we express the invariant am-
plitudes Fi in terms of these s-channel helicity amplitudes.
In addition, we quote the explicit results for the imaginary
parts of the helicity amplitudes in the case of πN inter-
mediate states.

We work in the c.m. system of the s-channel process
γ∗N → γN , and all kinematical quantities are understood
in this system. The energies of the incoming (outgoing)
nucleon are denoted by E (E′), respectively. The incoming
photon has energy q0 and its momentum q is chosen to
point in the z-direction. The outgoing-photon momentum
q ′ is chosen to lie in the xz-plane and makes an angle θ

with the z-axis. We use the Lorentz gauge for the photon
polarization vectors. For the initial (virtual) photon, the
transverse and longitudinal polarization vectors are given
by

εµ (q, λ = ±1) =
(

0,∓ 1√
2
,− i√

2
, 0
)

,

εµ (q, λ = 0) =
( |q |

Q
, 0, 0,

q0

Q

)
, (C.1)

whereas for the final (real) photon, the polarization vec-
tors are given by:

ε
′µ
(
q′, λ

′
=±1

)
=
(

0,∓ 1√
2

cos θ,− i√
2
,± 1√

2
sin θ

)
.

(C.2)
The initial nucleon, characterized by the momentum

p and the polarization λN , is propagating in the negative
z-direction. The final nucleon, with momentum p

′
and

polarization λ′
N , makes an angle 180◦ − θ with respect to

the virtual photon, and has the azimuthal angle 180◦ +
φγ∗γ . This leads to the following spinor conventions for
the incoming and outgoing nucleons:

u(p, λN ) =
√

E + M


 χλN

2λN
|p|

E+M χλN


 ,

u(p
′
, λ′

N ) =
√

E′ + M




χ′
λ′

N

2λ′
N

|p ′ |
E′+M χ′

λ′
N


 , (C.3)

where

χ 1
2

=


0

1


 , χ− 1

2
=


−1

0


 ,

χ′
1
2

=


 sin θ

2

− cos θ
2


 , χ′

− 1
2

=


 cos θ

2

sin θ
2


 . (C.4)

Appendix C.2. VCS reduced helicity amplitudes

The reduced helicity amplitudes τi are defined by factor-
izing out from the helicity amplitudes T s

λ′λ′
N ;λλN

the kine-

matical factors in
(
cos θ

2

)|Λ+Λ′|
and

(
sin θ

2

)|Λ−Λ′|
, with

Λ = λ− λN and Λ′ = λ′ − λ′
N . The relations between the

12 independent VCS helicity amplitudes and the reduced
helicity amplitudes τi (i = 1, .., 12) read:

T s
1 1

2 ;1 1
2

= cos
θ

2
τ1, T s

−1 1
2 ;−1 1

2
= cos3

θ

2
τ2,

T s
1− 1

2 ;1 1
2

= cos2
θ

2
sin

θ

2
τ3, T s

1 1
2 ;−1 1

2
= cos

θ

2
sin2 θ

2
τ4,

T s
−1− 1

2 ;1 1
2

= sin
θ

2
τ5, T s

1− 1
2 ;−1 1

2
= sin3 θ

2
τ6,
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T s
−1 1

2 ;1 1
2
=cos

θ

2
sin2 θ

2
τ7, T s

−1− 1
2 ;−1 1

2
=cos2

θ

2
sin

θ

2
τ8,

T s
1 1

2 ;0 1
2

= sin
θ

2
τ9, T s

−1− 1
2 ;0 1

2
= cos

θ

2
τ10,

T s
−1 1

2 ;0 1
2
=sin

θ

2
cos2

θ

2
τ11, T s

1− 1
2 ;0 1

2
=cos

θ

2
sin2 θ

2
τ12.(C.5)

Appendix C.3. Relations between the invariant
amplitudes of Berg and Lindner and the VCS reduced
helicity amplitudes

The imaginary parts of the invariant amplitudes Fi, which
enter the dispersion integrals of eq. (13), are constructed
from the VCS reduced helicity amplitudes τi, which were
defined in (C.5). To avoid too lengthy formulas, we display
here the relations between the amplitudes Bi and the τi.
The relations between the Fi and the τi are then obtained
from those relations, and by using eq. (A.7), which ex-
presses the Fi in terms of the Bi.

For convenience we define the following abbreviations
for kinematical factors:

C1 = 1 +
|q |

E + M
, C2 = 1 − |q |

E + M
,

C3 = 1 +
√

s − M√
s + M

|q |
E + M

, C4 = 1 −
√

s − M√
s + M

|q |
E + M

,

C5 =
|q |

E + M
+

|q ′|
E′ + M

, C6 =
|q |

E + M
− |q ′|

E′ + M
.

With these definitions, the relations between the am-
plitudes Bi of Berg and Lindner and the reduced helicity
amplitudes τi are given by

− e2 B1 = −
√

(E + M)(E′ + M)
4
√

s |q |
×(

√
s − M)

|q | − q0 cos θ

t + Q2
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{
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θ

2
τ2 − sin2 θ

2

(
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)

− 2
√

2 Q

|q | − q0 cos θ
sin2 θ

2

(
τ9 − cos2

θ

2
τ11

)]

+ C1

[
− τ5 − sin2 θ

2
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θ

2

(
τ3 + τ8

)

+
2
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2 Q

|q | − q0 cos θ
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θ

2

(
τ10 − sin2 θ

2
τ12

)]}
, (C.6)

− e2 B2 =

√
(E + M)(E′ + M)

4
√

s |q |
|q | − q0 cos θ
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θ
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τ2 − sin2 θ
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(
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2 Q

|q | − q0 cos θ
sin2 θ

2

(
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θ

2
τ11

)]

+C4

[
− τ5 − sin2 θ

2
τ6 + cos2

θ

2

(
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2
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2 Q
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θ

2

(
τ10 − sin2 θ

2
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)]}
, (C.7)

− e2 B3 = −
√

(E + M)(E′ + M)
8
√
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√
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, (C.8)

− e2 B4 =

√
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, (C.9)
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√
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, (C.10)

−e2 B6 =

√
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×
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(
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, (C.11)

− e2 B7 = −
√
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−|q | − q0 cos θ√
2 Q cos2 θ
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τ9 + cos2

θ
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, (C.16)
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. (C.17)

Equations (C.6)–(C.17) together with the equations in
(A.7) eventually allow to express the Fi in terms of the
VCS helicity amplitudes.

Appendix C.4. Unitarity relations between the VCS
reduced helicity amplitudes and pion photo- and
electro-production multipoles

If we write down the unitarity equations for the VCS
helicity amplitudes and consider only πN intermediate
states, then the imaginary parts of the VCS helicity ampli-
tudes can be expressed in terms of the γ∗N → πN times
γN → πN multipoles

Imτ1 = −8πqπ
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), (C.18)

where τi are the reduced helicity amplitudes defined in
eq. (C.5). In eq. (C.18), qπ is the pion c.m. momentum in
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the intermediate state, and F is a hypergeometric poly-
nomial defined as

F (a; b; c;x) = 1+
ab

c

x

1!
+

a(a + 1)b(b + 1)
c(c + 1)

x2

2!
+ ... (C.19)

In eq. (C.18), the transverse multipoles Al±, Bl±, and the
longitudinal multipoles Ll± are defined as in ref. [40].
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